Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Variation of atmospheric volatile organic compounds over the Southern Indian Ocean (30–49°S)

Aurélie Colomb A E , Valérie Gros B , Séverine Alvain C , Roland Sarda-Esteve B , Bernard Bonsang B , C. Moulin B , Thomas Klüpfel D and Jonathan Williams D
+ Author Affiliations
- Author Affiliations

A Laboratoire Inter-universitaire des Systèmes Atmosphériques, UMR 7583-CNRS, F-94010 Créteil, France.

B Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, F-91191 Gif sur Yvette, France.

C Laboratoire Ecosystèmes littoraux et cotiers (ELICO), Maison de la Recherche en environnement Natural (MREN), CNRS-ULCO, F-62930 Wimereux, France.

D Max Planck Institute for Chemistry, Air Chemistry Department, J.J. Becher Weg, 27, D-55127 Mainz, Germany.

E Corresponding author. Email: colomb@lisa.univ-paris12.fr

Environmental Chemistry 6(1) 70-82 https://doi.org/10.1071/EN08072
Submitted: 7 October 2008  Accepted: 16 December 2008   Published: 3 March 2009

Environmental context. Oceans represent 70% of the blue planet, and surprisingly, ocean emission in term of volatile organic compounds is poorly understood. The potential climate impacts on a global scale of various trace organic gases have been established, and the terrestrial inputs are well studied, but little is known about which of these can be emitted from oceanic sources. In the present study, atmospheric samples were taken over the Southern Indian Ocean, while crossing some oceanic fronts and different phytoplankton species. Such a study should aid in understanding oceanic emission, especially from phytoplankton, and will help modellers to determine concentrations of organic traces in the remote marine troposphere.

Abstract. Considering its size and potential importance, the ocean is poorly characterised in terms of volatile organic compounds (VOC) that play important roles in global atmospheric chemistry. In order to better understand their potential sources and sinks over the Southern Indian Austral Ocean, shipborne measurements of selected species were made during the MANCHOT campaign during December 2004, on board the research vessel Marion Dufresne. Along the transect La Réunion to Kerguelen Island, air measurements of selected VOC (including dimethylsulfide (DMS) isoprene, carbonyls and organohalogens), carbon monoxide and ozone were performed, crossing subtropical, temperate and sub-Antarctic waters as well as pronounced subtropical and sub-Antarctic oceanic fronts. The remote marine boundary layer was characterised at latitudes 45–50°S. Oceanic fronts were associated with enhanced chlorophyll and biological activity in the seawater and elevated DMS and organohalogens in the atmosphere. These were compared with a satellite-derived phytoplankton distribution (PHYSAT). Diurnal variation for isoprene, terpenes, acetone and acetaldehyde was observed, analogously to recent results observed in mesocosm experiments.

Additional keywords: oceanic emissions, oceanic fronts, PHYSAT method.


Acknowledgements

The Institut Français Paul Emile Victor (IPEV) and the Terres Australes et Antarctiques Francaises institute (TAAF) are gratefully acknowledged for their logistical support. A special thanks to J. Sciare for arranging the participation through the AEROTRACE program. Meteo-France is acknowledged for making available the meteorological data acquired on board and IPEV for the chlorophyll data. We would like to thank B. Ollivier (IPEV) for his help during the installation on board and the whole crew of the Marion Dufresne. We acknowledge Ilka Peeken and the IFM-GEOMAR Institute (Kiel, Germany) for providing the samples for the laboratory experiments, Carl Brenninkmeijer (MPI Institute, Mainz, Germany) for the use of the RIX compressor, the British Atmospheric Data Centre trajectory service for the back-trajectories used in the present paper. Financial support from the Centre National de la Recherche Scientifique (CNRS) and from Max Planck Gesellschaft (MPG) are also gratefully acknowledged.


References


[1]   C. Veth , I. Peeken , R. Scharek , Physical anatomy of fronts and surface waters in the ACC near the 6°W meridian during austral spring 1992. Deep Sea Res. Part II Top. Stud. Oceanogr. 1997 , 44,  23.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   N. J. P. Owens , J. Priddle , M. J. Whitehouse , Variations in phytoplanktonic nitrogen assimilation around South Georgia and in the Bransfield Strait (Southern Ocean). Mar. Chem. 1991 , 35,  287.
        |  CAS |  open url image1

[3]   N. J. P. Owens , C. S. Law , R. F. C. Mantoura , P. H. Burkill , C. A. Llewellyn , Methane flux to the atmosphere from the Arabian Sea. Nature 1991 , 354,  293.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[4]   R. M. Moore , D. E. Oram , S. A. Penkett , Production of isoprene by marine-phytoplankton cultures. Geophys. Res. Lett. 1994 , 21,  2507.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   D. D. Riemer , P. J. Milne , R. G. Zika , W. H. Pos , Photoproduction of non-methane hydrocarbons (NMHCs) in seawater. Mar. Chem. 2000 , 71,  177.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[6]   S. L. Shaw , S. W. Chisholm , R. G. Prinn , Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. Mar. Chem. 2003 , 80,  227.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   W. J. Broadgate , G. Malin , F. C. Kupper , A. Thompson , P. S. Liss , Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere. Mar. Chem. 2004 , 88,  61.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   N. Yassaa , A. Colomb , K. Lochte , I. Peeken , J. Williams , Development and application of a headspace solid-phase microextraction and gas chromatography/mass spectrometry method for the determination of dimethylsulfide emitted by eight marine phytoplankton species. Limnol. Oceanogr. Methods 2006 , 4,  374.
        |  CAS |  open url image1

[9]   A. Colomb , N. Yassaa , J. Williams , I. Peeken , K. Lochte , Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS). J. Environ. Monit. 2008 , 10,  325.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   H. B. Singh , L. J. Salas , R. B. Chatfield , E. Czech , A. Fried , J. Walega , M. J. Evans , B. D. Field , D. J. Jacob , D. Blake , B. Heikes , R. Talbot , G. Sachse , J. H. Crawford , M. A. Avery , S. Sandholm , H. Fuelberg , Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. J. Geophys. Res. – Atmospheres 2004 , 109,  D15S07.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   J. Williams , R. Holzinger , V. Gros , X. Xu , E. Atlas , D. W. R. Wallace , Measurements of organic species in air and seawater from the tropical Atlantic. Geophys. Res. Lett. 2004 , 31,  L23S06.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   C. A. Marandino , W. J. De Bruyn , S. D. Miller , M. J. Prather , E. S. Saltzman , Oceanic uptake and the global atmospheric acetone budget. Geophys. Res. Lett. 2005 , 32,  L15806.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   J. Sciare , N. Mihalopoulos , F. J. Dentener , Interannual variability of atmospheric dimethylsulfide in the southern Indian Ocean. J. Geophys. Res. – Atmospheres 2000 , 105,  26369.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   B. Bonsang , M. Kanakidou , G. Lambert , NMHC in the marine atmosphere – preliminary results of monitoring at Amsterdam Island. J. Atmos. Chem. 1990 , 11,  169.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   V. Gros , B. Bonsang , R. Sarda-Esteve , Atmospheric carbon monoxide ‘in situ’ monitoring by automatic gas chromatography. Chemosphere 1999 , 1,  153.
        |  CAS |  open url image1

[16]   V. Gros , B. Bonsang , D. Martin , P. C. Novelli , V. Kazan , Short-term carbon monoxide measurements at Amsterdam Island: estimations of biomass burning emissions rates. Chemosphere 1999 , 1,  163.
        |  CAS |  open url image1

[17]   B. Bonsang , A. Al Aarbaoui , J. Sciare , Diurnal variation of non-methane hydrocarbons in the subantarctic atmosphere. Environ. Chem. 2008 , 5,  16.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   I. M. Belkin , A. L. Gordon , Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res. – Oceans 1996 , 101,  3675.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   J. E. Mak , C. A. M. Brenninkmeijer , Compressed-air sample technology for isotopic analysis of atmospheric carbon monoxide. J. Atmos. Ocean. Technol. 1994 , 11,  425.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   V. Gros , J. Williams , J. A. van Aardenne , G. Salisbury , R. Hofmann , M. G. Lawrence , R. von Kuhlmann , J. Lelieveld , M. Krol , H. Berresheim , J. M. Lobert , E. Atlas , Origin of anthropogenic hydrocarbons and halocarbons measured in the summertime European outflow (on Crete in 2001). Atmos. Chem. Phys. 2003 , 3,  1223.
        |  CAS |  open url image1

[21]   W. Lindinger , A. Hansel , A. Jordan , Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 1998 , 27,  347.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   G. Salisbury , J. Williams , R. Holzinger , V. Gros , N. Mihalopoulos , M. Vrekoussis , R. Sarda-Esteve , H. Berresheim , R. von Kuhlmann , M. Lawrence , J. Lelieveld , Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July–August 2001. Atmos. Chem. Phys. 2003 , 3,  925.
        |  CAS |  open url image1

[23]   J. Williams , U. Pöschl , P. J. Crutzen , A. Hansel , R. Holzinger , C. Warneke , W. Lindinger , J. Lelieveld , An atmospheric chemistry interpretation of mass scans obtained from a proton transfer mass spectrometer flown over the tropical rainforest of Surinam. J. Atmos. Chem. 2001 , 38,  133.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   J. A. de Gouw , P. D. Goldan , C. Warneke , W. C. Kuster , J. M. Roberts , M. Marchewka , S. B. Bertman , A. A. P. Pszenny , W. C. Keene , Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J. Geophys. Res. – Atmospheres 2003 , 108,  4682.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   E. C. Apel , T. Brauers , R. Koppmann , B. Bandowe , J. Boßmeyer , C. Holzke , R. Tillmann , A. Wahner , R. Wegener , A. Brunner , M. Jocher , T. Ruuskanen , et al. Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber. J. Geophys. Res. – Atmospheres 2008 , 113,  D20307.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   T. Karl , R. Fall , P. J. Crutzen , A. Jordan , W. Lindinger , High concentrations of reactive biogenic VOCs at a high-altitude site in late autumn. Geophys. Res. Lett. 2001 , 28,  507.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   S. Alvain , C. Moulin , Y. Dandonneau , F. M. Breon , Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res. Part I Oceanogr. Res. Pap. 2005 , 52,  1989.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   Y. Dandonneau , P.-Y. Deschamps , J.-M. Nicolas , H. Loisel , J. Blanchot , Y. Montel , F. Thieuleux , G. Bécu , Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004 , 51,  303.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   J. E. O’Reilly , S. Maritorena , B. G. Mitchell , D. A. Siegel , K. L. Carder , S. A. Garver , M. Kahru , C. McClain , Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. – Oceans 1998 , 103,  24937.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   S. Alvain , C. Moulin , Y. Dandonneau , Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view (SeaWiFS 1998–2006). Global Biological Cy. 2008 , 22,  GB3001.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   K. Abrahamsson , S. Bertilsson , M. Chierici , A. Franssona , P. W. Fronemanc , A. Loréna , E. A. Pakhomov , Variations of biochemical parameters along a transect in the Southern Ocean, with special emphasis on volatile halogenated organic compounds. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004 , 51,  2745.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   P. W. Froneman , R. Perissinotto , C. D. McQuaid , R. K. Laubscher , Summer distribution of net phytoplankton in the Atlantic sector of the Southern Ocean. Polar Biol. 1995 , 15,  77.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   P. W. Froneman , E. A. Pakhomov , V. Meaton , Surface distribution of microphytoplankton of the south-west Indian Ocean along a repeat transect between Cape Town and the Prince Edward Islands. S. Afr. J. Sci. 1998 , 94,  124.
         open url image1

[34]   F. Eynaud , J. Giraudeau , J. J. Pichon , C. J. Pudsey , Sea-surface distribution of coccolithophores, diatoms, silicoflagellates and dinoflagellates in the South Atlantic Ocean during the late austral summer 1995. Deep Sea Res. Part I Oceanogr. Res. Pap. 1999 , 46,  451.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   J. Sciare , E. Baboukas , N. Mihalopoulos , Short-term variability of atmospheric DMS and its oxidation products at Amsterdam Island during summer time. J. Atmos. Chem. 2001 , 39,  281.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   A. Wisthaler , A. Hansel , R. R. Dickerson , P. J. Crutzen , Organic trace gas measurements by PTR-MS during INDOEX 1999. J. Geophys. Res. – Atmospheres 2002 , 107,  8024.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   C. Warneke , J. A. de Gouw , Organic trace gas composition of the marine boundary layer over the north-west Indian Ocean in April 2000. Atmos. Environ. 2001 , 35,  5923.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   H. B. Singh , D. Ohara , D. Herlth , W. Sachse , D. R. Blake , J. D. Bradshaw , M. Kanakidou , P. J. Crutzen , Acetone in the atmosphere – distribution, sources, and sinks. J. Geophys. Res. – Atmospheres 1994 , 99,  1805.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   Lobert J. M., Scharffe D. H., Hao H.-M., Kuhlbusch T. A., Seuwen R., Warneck P., Crutzen P. J., Experimental evaluation of biomass burning emissions: nitrogen and carbon containing compounds, in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications (Ed. J. S. Levine) 1991, pp. 122–125 (MIT Press: Cambridge, MA).

[40]   S. Hamm , J. Hahn , G. Helas , P. Warneck , Acetonitrile in the troposphere – residence time due to rainout and uptake by the ocean. Geophys. Res. Lett. 1984 , 11,  1207.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   H. W. Bange , J. Williams , New directions: acetonitrile in atmospheric and biogeochemical cycles. Atmos. Environ. 2000 , 34,  4959.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   C. H. Dimmer , A. McCulloch , P. G. Simmonds , G. Nickless , M. R. Bassford , D. Smythe-Wright , Tropospheric concentrations of the chlorinated solvents tetrachloroethene and trichloroethene, measured in the remote northern hemisphere. Atmos. Environ. 2001 , 35,  1171.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[43]   H. B. Singh , Y. Chen , G. L. Gregory , G. W. Sachse , R. Talbot , D. R. Blake , Y. Kondo , J. D. Bradshaw , B. Heikes , D. Thornton , Trace chemical measurements from the northern midlatitude lowermost stratosphere in early spring: distributions, correlations, and fate. Geophys. Res. Lett. 1997 , 24,  127.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[44]   J. Sciare , N. Mihalopoulos , B. C. Nguyen , Summertime seawater concentrations of dimethylsulfide in the western Indian Ocean: reconciliation of fluxes and spatial variability with long-term atmospheric observations. J. Atmos. Chem. 1999 , 32,  357.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[45]   N. Yassaa , J. Williams , Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry. Atmos. Environ. 2005 , 39,  4875.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[46]   D. J. Faulkner , Interesting aspects of marine natural-products chemistry. Tetrahedron 1977 , 33,  1421.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[47]   G. W. Gribble , Naturally occurring organohalogen compounds – a survey. J. Nat. Prod. 1992 , 55,  1353.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[48]   B. Quack , D. W. R. Wallace , Air–sea flux of bromoform: controls, rates, and implications. Global Biogeochem. Cy. 2003 , 17,  1023.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[49]   Y. Yokouchi , Y. Nojiri , L. A. Barrie , D. Toom-Sauntry , Y. Fujinuma , Atmospheric methyl iodide: high correlation with surface seawater temperature and its implications on the sea-to-air flux. J. Geophys. Res. – Atmospheres 2001 , 106,  12661.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[50]   U. Richter , D. W. R. Wallace , Production of methyl iodide in the tropical Atlantic Ocean. Geophys. Res. Lett. 2004 , 31,  L23S03.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[51]   B. Bonsang , C. Polle , G. Lambert , Evidence for marine production of isoprene. Geophys. Res. Lett. 1992 , 19,  1129.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[52]   P. J. Milne , D. D. Riemer , R. G. Zika , L. E. Brand , Measurement of vertical distribution of isoprene in surface seawater, its chemical fate, and its emission from several phytoplankton monocultures. Mar. Chem. 1995 , 48,  237.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[53]   N. Meskhidze , A. Nenes , Phytoplankton and cloudiness in the Southern Ocean. Science 2006 , 314,  1419.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[54]   M. Ratte , O. Bujok , A. Spitzy , J. Rudolph , Photochemical alkene formation in seawater from dissolved organic carbon: results from laboratory experiments. J. Geophys. Res. – Atmospheres 1998 , 103,  5707.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[55]   V. Sinha , J. Williams , M. Meyerhofer , U. Riebesell , A. I. Paulino , A. Larsen , Air–sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment. Atmos. Chem. Phys. 2007 , 7,  739.
        |  CAS |  open url image1

[56]   C. Jost , J. Trentmann , D. Sprung , M. O. Andreae , K. Dewey , Deposition of acetonitrile to the Atlantic Ocean off Namibia and Angola and its implications for the atmospheric budget of acetonitrile. Geophys. Res. Lett. 2003 , 30,  1837.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[57]   L. J. Carpenter , P. S. Liss , S. A. Penkett , Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans. J. Geophys. Res. – Atmospheres 2003 , 108,  4256.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[58]   H. Singh , Y. Chen , A. Tabazadeh , Y. Fukui , I. Bey , R. Yantosca , D. Jacob , F. Arnold , K. Wohlfrom , E. Atlas , F. Flocke , D. Blake , N. Blake , B. Heikes , J. Snow , R. Talbot , G. Gregory , G. Sachse , S. Vay , Y. Kondo , Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic. J. Geophys. Res. – Atmospheres 2000 , 105,  3795.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[59]   I. E. Galbally , W. Kirstine , The production of methanol by flowering plants and the global cycle of methanol. J. Atmos. Chem. 2002 , 43,  195.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[60]   B. Heikes , J. Snow , P. Egli , D. O’Sullivan , J. Crawford , J. Olson , G. Chen , D. Davis , N. Blake , D. Blake , Formaldehyde over the central Pacific during PEM-Tropics B. J. Geophys. Res. – Atmospheres 2001 , 106,  32717.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[61]   A. T. J. de Laat , J. A. de Gouw , J. Lelieveld , A. Hansel , Model analysis of trace gas measurements and pollution impact during INDOEX. J. Geophys. Res. – Atmospheres 2001 , 106,  28469.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[62]   D. J. Jacob , B. D. Field , E. M. Jin , I. Bey , Q. Li , J. A. Logan , R. M. Yantosca , H. B. Singh , Atmospheric budget of acetone. J. Geophys. Res. – Atmospheres 2002 , 107,  4100.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[63]   D. J. Jacob , B. D. Field , Q. Li , D. R. Blake , J. de Gouw , C. Warneke , A. Hansel , A. Wisthaler , H. B. Singh , Global budget of methanol: constraints from atmospheric observations. J. Geophys. Res. – Atmospheres 2005 , 110,  D08303.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[64]   B. G. Heikes , W. Chang , M. E. Q. Pilson , E. Swift , H. B. Singh , A. Guenther , D. J. Jacob , B. D. Field , R. Fall , D. Riemer , L. Brand , Atmospheric methanol budget and ocean implication. Global Biogeochem. Cy. 2002 , 16,  1133.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[65]   M. Nemecek-Marshall , C. Wojciechowski , J. Kuzma , G. M. Silver , R. Fall , Marine Vibrio species produce the volatile organic compound acetone. Appl. Environ. Microbiol. 1995 , 61,  44.
        |  CAS | PubMed |  open url image1

[66]   H. B. Singh , A. Tabazadeh , M. J. Evans , B. D. Field , D. J. Jacob , G. Sachse , J. H. Crawford , R. Shetter , W. H. Brune , Oxygenated volatile organic chemicals in the oceans: inferences and implications based on atmospheric observations and air–sea exchange models. Geophys. Res. Lett. 2003 , 30,  1862.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[67]   N. Yassaa , I. Peeken , E. Zöllner , K. Bluhm , S. Arnold , D. Spracklen , J. Williams , Evidence for marine production of monoterpenes. Environ. Chem. 2008 , 5,  391.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1