Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

1H NMR metabolomics of earthworm responses to sub-lethal PAH exposure

Sarah A. E. Brown A , Andre J. Simpson A and Myrna J. Simpson A B
+ Author Affiliations
- Author Affiliations

A Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.

B Corresponding author. Email: myrna.simpson@utoronto.ca

Environmental Chemistry 6(5) 432-440 https://doi.org/10.1071/EN09054
Submitted: 5 May 2009  Accepted: 8 August 2009   Published: 22 October 2009

Environmental context. Polycyclic aromatic hydrocarbons (PAHs) are common contaminants, but there has been limited research investigating the responses of earthworm exposure to sub-lethal PAH concentrations. In this study, 1H nuclear magnetic resonance (NMR) metabolomics was used to characterise the metabolic responses of Eisenia fetida earthworm exposure in contact tests to 10, 50 and 100 μg cm–2 naphthalene, phenanthrene and pyrene. The findings of this study highlight the potential of metabolomics as a tool for monitoring earthworm responses to sub-lethal concentrations of problematic environmental contaminants.

Abstract. Metabolic responses of earthworm exposure to the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene and pyrene in contact tests were measured using 1H nuclear magnetic resonance (NMR). Novel metabolites were not detected but principal component analysis (PCA) showed that earthworms exposed to 10, 50 and 100 μg cm–2 naphthalene, phenanthrene and pyrene differed from unexposed (control) earthworms. Partial least-squares-discriminant analysis (PLS-DA) showed that earthworms had statistically significant responses to PAH exposure, except for 10 μg cm–2 naphthalene and 50 μg cm–2 pyrene. Leucine, valine, alanine, lysine and maltose were identified as potential response indicators of PAH exposure, but whether the concentration of these metabolites increased or decreased was PAH- and concentration-dependent. These initial findings reveal the potential of metabolomics for monitoring earthworm responses to sub-lethal PAH exposure and highlight the role of metabolomics as a future tool in ecotoxicology.

Additional keywords: contact tests, Eisenia fetida, metabolic profiling, metabonomics.


Acknowledgement

We acknowledge the Province of Ontario Premier’s Research Excellence Award and the Natural Sciences and Engineering Research Council (NSERC) of Canada Strategic Grant for supporting this research. S.A.E.B. thanks NSERC for a postgraduate scholarship, A.J.S. thanks the Government of Ontario for an Early Researcher Award (ERA) and M.J.S. thanks NSERC for a University Faculty Award. We would also like to thank Dr Jennifer McKelvie and Prof. George Arhonditsis for feedback on this manuscript and valuable discussions.


References


[1]   C. A. Edwards , P. J. Bohlen , The effects of toxic chemicals on earthworms. Rev. Environ. Contam. Toxicol. 1992 , 125,  23.
        |  CAS |  open url image1

[2]   C. A. Callahan , M. A. Shirazi , E. F. Neuhauser , Comparative toxicity of chemicals to earthworms. Environ. Toxicol. Chem. 1994 , 13,  291.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   B. L. Roberts , H. W. Dorough , Relative toxicities of chemicals to the earthworm Eisenia foetida. Environ. Toxicol. Chem. 1984 , 3,  67.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[4]   E. F. Neuhauser , R. C. Loehr , M. R. Malecki , D. L. Milligan , P. R. Durkin , The toxicity of selected organic chemicals to the earthworm Eisenia fetida. J. Environ. Qual. 1985 , 14,  383.
        |  CAS |  open url image1

[5]   Achazi R. K., van Gestel C. A. M., Uptake and accumulation of PAHs by terrestrial invertebrates, in PAHs: An Ecotoxicological Perspective (Ed. P. E. T. Douben) 2003, pp. 173–190 (Wiley: Chichester, UK).

[6]   E. F. Neuhauser , P. R. Durkin , M. R. Malecki , M. Anatra , Comparative toxicity of ten organic chemicals to four earthworm species. Comp. Biochem. Phys. C 1986 , 83,  197.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   Earthworm acute toxicity tests, in OECD Guideline 207 1984 (Organization for Economic Cooperation and Development: Paris).

[8]   D. J. Spurgeon , J. M. Weeks , C. A. M. van Gestel , A summary of eleven years progress in earthworm ecotoxicology. Pedobiologia (Jena) 2003 , 47,  588.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   J. G. Bundy , E. M. Lenz , N. J. Bailey , C. L. Gavaghan , C. Svendsen , D. J. Spurgeon , P. K. Hankard , D. Osborn , J. M. Weeks , S. A. Traugere , P. Speir , I. Sanders , J. C. Lindon , J. K. Nicholson , H. Tang , Metabonomic assessment of toxicity of 4-fluoroaniline, 3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): Identification of new endogenous biomarkers. Environ. Toxicol. Chem. 2002 , 21,  1966.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   C. Y. Lin , M. R. Viant , R. S. Tjeerdema , Metabolomics: Methodologies and applications in the environmental sciences. J. Pestic. Sci. 2006 , 31,  245.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[11]   W. Wilcke , Polycyclic Aromatic Hydrocarbons (PAHs) soil – a review. J. Plant Nutr. Soil Sci. 2000 , 163,  229.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   M. Krauss , W. Wilcke , W. Zech , Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environ. Sci. Technol. 2000 , 34,  4335.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   D. G. Robertson , Metabonomics in toxicology: a review. Toxicol. Sci. 2005 , 85,  809.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   M. G. Miller , Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities and threats). J. Proteome Res. 2007 , 6,  540.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   M. A. Warne , E. M. Lenz , D. Osborn , J. M. Weeks , J. K. Nicholson , An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers 2000 , 5,  56.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   J. G. Bundy , D. Osborn , J. M. Weeks , J. C. Lindon , J. K. Nicholson , An NMR-based metabonomic approach to the investigation of coelomic fluid biochemistry in earthworms under toxic stress. FEBS Lett. 2001 , 500,  31.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   J. R. McKelvie , J. Yuk , Y. Xu , A. J. Simpson , M. J. Simpson , 1H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics 2009 , 5,  84.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   W. B. Dunn , D. I. Ellis , Metabolomics: current analytical platforms and methodologies. TrAC – Trend. Anal. Chem. 2005 , 24,  285.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[19]   E. M. Lenz , I. D. Wilson , Analytical strategies in metabonomics. J. Proteome Res. 2007 , 6,  443.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   E. M. Lenz , J. M. Weeks , J. C. Lindon , D. Osborn , J. K. Nicholson , Qualitative high field 1H-NMR spectroscopy for the characterization of endogenous metabolites in earthworms with biochemical biomarker potential. Metabolomics 2005 , 1,  123.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   O. A. H. Jones , D. J. Spurgeon , C. Svendsen , J. L. Griffin , A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere 2008 , 71,  601.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[22]   F. Malz , H. Jancke , Validation of quantitative NMR. J. Pharm. Biomed. Anal. 2005 , 38,  813.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   E. J. Saude , C. M. Slupsky , B. D. Sykes , Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics 2006 , 2,  113.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   A. Caligiani , D. Acquotti , G. Palla , V. Bocchi , Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy. Anal. Chim. Acta 2007 , 585,  110.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[25]   J. O. T. Gibb , C. Svendsen , J. M. Weeks , J. K. Nicholson , 1H NMR spectroscopic investigations of tissue metabolite biomarker response to Cu(II) exposure in terrestrial invertebrates: identification of free histidine as a novel biomarker of exposure to copper in earthworms. Biomarkers 1997 , 2,  295.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   Kula H., Larink O., Tests on the earthworms Eisenia fetida and Aporrectodea caliginosa, in Handbook of Soil Invertebrate Toxicity Tests (Eds H. Lokke, C. A. M. van Gestel) 1998, pp. 95–112 (Wiley: Chichester, UK).

[27]   P. J. Brown , S. M. Long , D. J. Spurgeon , C. Svendsen , P. K. Hankard , Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon. Chemosphere 2004 , 57,  1675.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[28]   L. E. Sverdrup , T. Nielsen , P. H. Krogh , Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity and water solubility. Environ. Sci. Technol. 2002 , 36,  2429.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   H. J. Lee , J. Villaume , D. C. Cullen , B. C. Kim , M. B. Gu , Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria. Biosens. Bioelectron. 2003 , 18,  571.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   S. A. E. Brown , A. J. Simpson , M. J. Simpson , Evaluation of sample preparation methods for 1H NMR metabolic profiling studies with Eisenia fetida. Environ. Toxicol. Chem. 2008 , 27,  828.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[31]   J. G. Bundy , D. J. Spurgeon , C. Svendsen , P. K. Hankard , J. M. Weeks , D. Osborn , J. C. Lindon , J. K. Nicholson , Environmental metabonomics: applying contamination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology 2004 , 13,  797.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   A. J. Simpson , S. A. E. Brown , N. M. R. Purge , Effective and easy solvent suppression. J. Magn. Reson. 2005 , 175,  340.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   H. M. Parsons , D. R. Ekman , T. W. Collette , M. R. Viant , Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst 2009 , 134,  478.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   M. Henningsson , E. Sundbom , B. Armelius , P. Erdberg , PLS model building: A multivariate approach to personality test data. Scand. J. Psychol. 2001 , 42,  399.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[35]   M. Barker , W. Rayens , Partial least squares for discrimination. J. Chemometr. 2003 , 17,  166.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   S. Wold , J. Trygg , A. Berglund , H. Antti , Some recent developments in PLS modeling. Chemometr. Intell. Lab. 2001 , 58,  131.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   S. Wold , M. Sjostrom , L. Eriksson , PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. 2001 , 58,  109.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   K. R. Lee , X. Lin , D. C. Park , S. Eslava , Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method. Proteomics 2003 , 3,  1680.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[39]   J. G. Bundy , H. C. Keun , J. K. Sidhu , D. J. Spurgeon , C. Svendsen , P. Kille , A. J. Morgan , Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environ. Sci. Technol. 2007 , 41,  4458.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[40]   J. S. Nowick , O. Khakshoor , M. Hashemzadeh , J. O. Brower , DSA: a new internal standard for NMR studies in aqueous solution. Org. Lett. 2003 , 5,  3511.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[41]   M. F. Alum , P. A. Shaw , B. C. Sweatman , B. K. Ubhi , J. N. Haldesen , S. C. Connor , 4,4-dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA), a promising universal internal standard for NMR-based metabolic profiling studies of biofluids, including blood plasma and serum. Metabolomics 2008 , 4,  122.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   M. H. Depledge , M. C. Fossi , The role of biomarkers in environmental assessment (2). Invertebrates. Ecotoxicology 1994 , 3,  161.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   P. Landrum , G. Lotufo , D. Gossiaux , M. Gedeon , J. Lee , Bioaccumulation and critical body residue of PAHs in the amphipod, Diporeia spp.: additional evidence to support toxicity additivity for PAH mixtures. Chemosphere 2003 , 51,  481.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[44]   J. O. T. Gibb , E. Holmes , J. K. Nicholson , M. Weeks , Proton NMR spectroscopic studies on tissue extracts of invertebrate species with pollution indicator potential. Comp. Biochem. Physiol. B 1997 , 118,  587.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   J. Owen , B. A. Hedley , C. Svendsen , J. Wren , M. J. Jonker , P. K. Hankard , L. J. Lister , S. R. Sturzenbaum , A. J. Morgan , D. J. Spurgeon , M. L. Blaxter , P. Kille , Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. BMC Genomics 2008 , 9,  266.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[46]   M. Forcella , E. Berra , R. Giacchini , B. Rossaro , P. Parenti , Increased alanine concentration is associated with exposure to fenitrothion but not carbamates in Chironomus riparius larvae. Ecotoxicol. Environ. Saf. 2007 , 66,  326.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[47]   E. Ben-Izhak Monselise , A. H. Parola , D. Kost , Low-frequency electromagnetic fields induce a stress effect upon higher plants, as evident by the universal stress signal, alanine. Biochem. Biophys. Res. Commun. 2003 , 302,  427.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1