Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Development of DNPH/HPLC method for the measurement of carbonyl compounds in the aqueous phase: applications to laboratory simulation and field measurement

Hongli Wang A , Xuan Zhang A and Zhongming Chen A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Haidian District, Beijing 100871, P. R. China.

B Corresponding author. Email: zmchen@pku.edu.cn

Environmental Chemistry 6(5) 389-397 https://doi.org/10.1071/EN09057
Submitted: 9 May 2009  Accepted: 17 September 2009   Published: 22 October 2009

Environmental context. Carbonyl compounds, a class of oxygenated organic matter, are crucial participants in atmospheric processes. Recently, studies have shown that the aqueous-phase processes of carbonyls have an important contribution to the formation of secondary organic aerosol (SOA), which is considered to have a significant impact on global climate change and human health. We developed the classical DNPH/HPLC method to characterise the aqueous-phase carbonyls, especially methacrolein, methyl vinyl ketone, glyoxal, and methylglyoxal, which are important precursors of SOA, in order to better understand the pathways of SOA formation in the atmosphere.

Abstract. The DNPH/HPLC method for characterising monocarbonyls and dicarbonyls in the aqueous phase has been developed. A series of experiments have been carried out using eight atmospheric ubiquitous carbonyl compounds as model dissolved compounds in both acetonitrile and water solution to obtain the optimal derivatisation and analysis qualifications. Compared with the analysis of carbonyls dissolved in acetonitrile, the influence of acidity on the derivatisation efficiency should be carefully considered in determining carbonyls in water and the optimal acidity is pH 2.0. We find that methyl vinyl ketone (MVK) transforms to crotonaldehyde during the derivatisation reaction. This transformation can be controlled to a minor degree by increasing the mixing ratio of DNPH to MVK up to 100 : 1. This improved method has been satisfactorily applied to laboratory simulations and field measurements for better understanding the carbonyl chemistry in the atmosphere.

Additional keywords: aqueous-phase, atmosphere, carbonyl, DNPH/HPLC method.


Acknowledgements

The authors gratefully thank the National Natural Science Foundation of China (grants 40875072 and 20677002) for their financial support. The authors thank Mingqun Huo, from the College of Environmental Sciences and Engineering of Peking University, for his precipitation data support.


References


[1]   P. Carlier , H. Hannachi , G. Mouvier , The chemistry of carbonyl compounds in the atmosphere: a review. Atmos. Environ. 1986 , 20,  2079.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   R. Atkinson , Gas-phase tropospheric chemistry of organic compounds: a review. Atmos. Environ. 1990 , 24,  1.
         open url image1

[3]   K. Müller , S. Haferkorn , W. Grabmer , A. Wisthaler , A. Hansel , J. Kreuzwieser , C. Cojocariu , H. Rennenberg , H. Herrmann , Biogenic carbonyl compounds within and above a coniferous forest in Germany. Atmos. Environ. 2006 , 40,  81.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   W. P. L. Carter , A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. 1990 , 24,  481.
         open url image1

[5]   A. P. Altschuller , Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours. Atmos. Environ. 1993 , 27,  21.
         open url image1

[6]   L. G. Anderson , J. A. Lanning , R. Barrell , J. Miyashima , R. H. Jones , P. Wolfe , Sources and sinks of formaldehyde and acetaldehyde: ananalysis of Denver’s ambient concentration data. Atmos. Environ. 1996 , 30,  2113.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   R. Atkinson , J. Arey , Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003 , 103,  4605.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   P. O. Wennberg , F. Hanisco , L. Jaegle , D. J. Jacob , Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere. Science 1998 , 279,  49.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   H. B. Singh , D. Ohara , D. Herlth , W. Sachse , D. R. Blake , J. D. Bradshaw , M. Kanakidou , P. J. Crutzen , Acetone in the atmosphere – distribution, sources and sinks. J. Geophys. Res. 1994 , 99,  1805.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   Seinfeld J. H., Pandis S. N., Atmospheric Chemistry and Physics 1998 (Wiley: New York).

[11]   D. K. Henze , J. H. Seinfeld , Global secondary organic aerosol from isoprene oxidation. Geophys. Res. Lett. 2006 , 33,  L09812.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   B. Ervens , A. G. Carlton , B. J. Turpin , K. E. Altieri , S. M. Kreidenweis , G. Feingold , Secondary organic aerosol yields from cloud-processing of isoprene oxidation products. Geophys. Res. Lett. 2008 , 35,  L02816.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   L. T. Iraci , B. M. Baker , G. S. Tyndall , J. J. Orlando , Measurements of the Henry’s Law coefficients of 2-methyl-3-buten-2-ol, methacrolein, and methyl vinyl ketone. J. Atmos. Chem. 1999 , 33,  321.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   R. Seyfioglu , M. Odabasi , Determination of Henry’s law constant of formaldehyde as a function of temperature: application to air-water exchange in Tahtali Lake in Izmir, Turkey. Environ. Monit. Assess. 2007 , 128,  343.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   H. S. S. Ip , X. H. H. Huang , J. Z. Yu , Effective Henry’s law constants of glyoxal, glyoxylic acid, and glycolic acid. Geophys. Res. Lett. 2009 , 36,  L01802.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   A. G. Carlton , B. J. Turpin , K. E. Altieri , S. Seitzinger , A. Reff , H. J. Lim , B. Ervens , Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos. Environ. 2007 , 41,  7588.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[17]   K. E. Altieri , S. P. Seitzinger , A. G. Carlton , B. J. Turpin , G. C. Klein , A. G. Marshall , Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry. Atmos. Environ. 2008 , 42,  1476.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   R. Volkamer , P. J. Ziemann , M. J. Molina , Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 2008 , 8,  14841.
         open url image1

[19]   H. J. Lim , A. G. Carlton , B. J. Turpin , Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ. Sci. Technol. 2005 , 39,  4441.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   K. E. Altieri , A. G. Carlton , H. J. Lim , B. J. Turpin , S. P. Seitzinger , Evidence for oligomer formation in clouds: reactions of isoprene oxidation products. Environ. Sci. Technol. 2006 , 40,  4956.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[21]   T. M. Fu , D. J. Jacob , C. L. Heald , Aqueous-phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America. Atmos. Environ. 2009 , 43,  1814.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   W. Klippel , P. Warneck , Formaldehyde in rainwater and on the atmospheric aerosol. Geophys. Res. Lett. 1978 , 5,  177.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   O. C. Zafiriou , J. Alford , M. Herrena , E. T. Peltzer , R. B. Gagosian , Formaldehyde in remote marine air and rain: flux measurements and estimates. Geophys. Res. Lett. 1980 , 7,  341.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   E. Sanhueza , Z. Ferrer , J. Romero , M. Santana , HCHO and HCOOH in tropical rains. Ambio 1991 , 20,  115.
         open url image1

[25]   P. Khare , G. S. Satsangi , N. Kumar , K. M. Kumari , S. S. Srivastava , HCHO, HCOOH and CH3COOH in air and rain water at a rural tropical site in north central India. Atmos. Environ. 1997 , 31,  3867.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   C. Economou , N. Mihalopoulos , Formaldehyde in the rainwater in the eastern Mediterranean: Occurrence, deposition and contribution to organic carbon budget. Atmos. Environ. 2002 , 36,  1337.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   R. M. Peña , S. Garcĩa , C. Herrero , M. Losada , A. Vázquezb , T. Lucas , Organic acids and aldehydes in rainwater in a northwest region of Spain. Atmos. Environ. 2002 , 36,  5277.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   Z. Polkowska , K. Skarzynska , T. Gorecki , J. Namiesnik , Formaldehyde in various forms of atmospheric precipitation and deposition from highly urbanized regions. J. Atmos. Chem. 2006 , 53,  211.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   D. Grosjean , B. Wright , Carbonyls in urban fog, ice fog, cloudwater and rainwater. Atmos. Environ. 1983 , 17,  2093.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   M. Igawa , J. W. Munger , M. R. Hoffmann , Analysis of aldehydes in cloud and fog water samples by HPLC with a post column reaction detector. Environ. Sci. Technol. 1989 , 23,  556.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   J. W. Munger , D. J. Jacob , B. C. Daube , L. W. Horowitz , W. C. Keene , B. G. Heikes , Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia. J. Geophys. Res. 1995 , 100,  9325.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   D. van Pinxteren , A. Plewka , D. Hofmann , K. Muller , H. Kramberger , B. Svrcina , K. Bachmann , W. Jaeschke , S. Mertes , J. L. Collett , H. Herrmann , Schmucke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds. Atmos. Environ. 2005 , 39,  4305.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   K. Skarzynska , Z. Polkowska , J. Namiesnik , Sample handling and determination of physico-chemical parameters in rime, hoarfrost, dew, fog and cloud water samples – a review. Pol. J. Environ. Stud. 2006 , 15,  185.
        |  CAS |  open url image1

[34]   K. Matsumoto , S. Kawai , M. Igawa , Dominant factors controlling concentrations of aldehydes in rain, fog, dew water, and in the gas phase. Atmos. Environ. 2005 , 39,  7321.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   S. Perrier , S. Houdier , F. Domine , A. Cabanes , L. Legagneux , A. L. Sumner , P. B. Shepson , Formaldehyde in Arctic snow. Incorporation into ice particles and evolution in the snowpack. Atmos. Environ. 2002 , 36,  2695.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   Z. Polkowska , K. Skarzynska , T. Gorecki , J. Namiesnik , Formaldehyde in various forms of atmospheric precipitation and deposition from highly urbanized regions. J. Atmos. Chem. 2006 , 53,  211.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   S. Steinberg , I. R. Kaplan , Determination of low molecular weight aldehydes in rain, fog and mist by reverse phase chromatography of the 2,4-dinitrophenyldihydrazone derivative. Int. J. Environ. Anal. Chem. 1984 , 18,  253.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   K. Kawamura , S. Steinberg , I. R. Kaplan , Concentrations of mono- and di-carboxylic acids and aldehydes in southern California wet precipitations: comparison of urban and non-urban samples and compositional changes during scavenging. Atmos. Environ. 1996 , 30,  1035.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   K. Kawamura , S. Steinberg , L. Ng , I. R. Kaplan , Wet deposition of low molecular weight mono- and di-carboxylic acids, aldehydes and inorganic species in Los Angeles. Atmos. Environ. 2001 , 35,  3917.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   A. Asthana , D. Bose , S. Kulshrestha , S. P. Pathak , S. K. Sanghi , W. Th. Kok , Determination of aldehydes in water samples by capillary electrophoresis after derivatisation with hydrazine benzene sulfonic acid. Chromatographia 1998 , 48,  807.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   A. Mainka , K. Bächmann , UV detection of derivatized carbonyl compounds in rain samples in capillary electrophoresis using sample stacking and a Z-shaped flow cell. J. Chromatogr. A 1997 , 767,  241.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   R. J. Kieber , M. F. Rhines , J. D. Willey , G. B. Avery , Rainwater formaldehyde: Concentration, deposition and photochemical formation. Atmos. Environ. 1999 , 33,  3659.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[43]   R. Seyfioglu , M. Odabasi , Investigation of air–water exchange of formaldehyde using the water surface sampler: Flux enhancement due to chemical reaction. Atmos. Environ. 2006 , 40,  3503.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[44]   L. M. Cárdenas , D. J. Brassington , B. J. Allan , H. Coe , B. Alicke , U. Platt , K. M. Wilson , J. M. C. Plane , S. A. Penkett , Intercomparison of formaldehyde measurements in clean and polluted atmosphere. J. Atmos. Chem. 2000 , 37,  53.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   R. J. Kieber , K. Mopper , Determination of picomolar concentrations of carbonyl compounds in natural waters, including seawater, by liquid chromatography. Environ. Sci. Technol. 1990 , 24,  1477.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[46]   I. El Haddad , Y. Liu , L. Nieto-Gligorovski , V. Michaud , B. Temime-Roussel , E. Quivet , N. Marchand , K. Sellegri , A. Monod , In-cloud processes of methacrolein under simulated conditions – Part 2: formation of secondary organic aerosol. Atmos. Chem. Phys. Discuss. 2009 , 9,  6425.
         open url image1

[47]   R. Schulte-Ladbeck , R. Lindahl , J. O. Levin , U. Karst , Characterization of chemical interferences in the determination of unsaturated aldehydes using aromatic hydrazine reagents and liquid chromatography. J. Environ. Monit. 2001 , 3,  306.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[48]   S. M. van Leeuwen , L. Hendriksen , U. Karst , Determination of aldehydes and ketones using derivatisation with 2,4-dinitrophenylhydrazine and liquid chromatography-atmospheric pressure photoionization-mass spectrometry. J. Chromatogr. A 2004 , 1058,  107.
        |  CAS | PubMed |  open url image1

[49]   C. K. Huynh , T. Vu-Duc , Intermethod comparisons of active sampling procedures and analysis of aldehydes at environmental levels. Anal. Bioanal. Chem. 2002 , 372,  654.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[50]   US Environmental Protection Agency, Determination of carbonyl compounds in drinking water by dinitrophenylhydrazine derivatization and high performance liquid chromatography. Method 554 1992.

[51]   Z. M. Chen , H. L. Wang , L. H. Zhu , C. X. Wang , C. Y. Jie , W. Hua , Aqueous-phase ozonolysis of methacrolein and methylvinyl ketone: a potentially important source of atmospheric aqueous oxidants. Atmos. Chem. Phys. 2008 , 8,  2255.
        |  CAS |  open url image1

[52]   P. J. Crutzen , J. Williams , U. Pöschl , P. Hoor , H. Fischer , C. Warneke , R. Holzinger , A. Hansel , W. Lindinger , B. Scheeren , J. Lelieveld , High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam. Atmos. Environ. 2000 , 34,  1161.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[53]   S. N. Matsunaga , A. B. Guenther , Y. Izawa , C. Wiedinmyer , J. P. Greenberg , K. Kawamura , Importance of wet precipitation as a removal and transport process for atmospheric water soluble carbonyls. Atmos. Environ. 2007 , 41,  790.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[54]   J. D. Blando , B. J. Turpin , Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos. Environ. 2000 , 34,  1623.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[55]   A. G. Carlton , B. J. Turpin , H. J. Lim , K. E. Altieri , S. Seitzinger , Link between isoprene and secondary organic aerosol (SOA): pyruvic acid oxidation yields low volatility organic acids in clouds. Geophys. Res. Lett. 2006 , 33,  L06822.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[56]   T. M. Fu , D. J. Jacob , F. Wittroch , J. P. Burrows , M. Vrekoussis , D. K. Henze , Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008 , 113,  D15303.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[57]   D. Pierotti , S. C. Wofsy , D. Jacob , R. A. Rasmussen , Isoprene and its oxidation products: methacrolein and methyl vinyl ketone. J. Geophys. Res. 1990 , 95,  1871.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[58]   S. A. Montzka , M. Trainer , W. M. Angevine , F. C. Fehsenfeld , Measurements of 3-methylfuran, methyl vinyl ketone, and methacrolein at a rural forested site in the south eastern United States. J. Geophys. Res. 1995 , 100,  11393.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[59]   T. A. Biesenthal , Q. Wu , P. B. Shepson , H. A. Wiebe , K. G. Anlauf , G. I. Mackay , A study of relationships between isoprene, its oxidation products, and ozone, in the lower Fraser Valley, BC. Atmos. Environ. 1997 , 31,  2049.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[60]   C. Warneke , R. Holzinger , A. Hansel , A. Jordan , W. Lindinger , U. Pöschl , J. Williams , P. Hoor , H. Fischer , P. J. Crutzen , H. A. Scheeren , J. Lelieveld , Isoprene and its oxidation products methyl vinyl ketone, methacrolein, and isoprene related peroxides measured online over the tropical rain forest of Surinamin March 1998. J. Atmos. Chem. 2001 , 38,  167.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1