Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

In-situ sampling of soil pore water: evaluation of linear-type microdialysis probes and suction cups at varied moisture contents

Manuel Miró A C , Walter J. Fitz B , Siegfried Swoboda B and Walter W. Wenzel B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, Carretera de Valldemossa km. 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain.

B BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Department of Forest and Soil Sciences, Peter-Jordan Straße 82, A-1190, Vienna, Austria. Email: walter.wenzel@boku.ac.at

C Corresponding author. Email: manuel.miro@uib.es

Environmental Chemistry 7(1) 123-131 https://doi.org/10.1071/EN09084
Submitted: 3 July 2009  Accepted: 17 November 2009   Published: 22 February 2010

Environmental context. There is a need for slightly invasive techniques capable of in-situ probing of target analytes in environmental compartments. Owing to its passive sampling mode and small probe dimensions, microdialysis-based dosimetry is an appealing tool for monitoring of solute concentrations in both water bodies and pore soil waters with minimum disturbance of natural equilibrium. The development of field applications is challenging but will provide novel insights as to the speciation and bioaccessibility of environmental pollutants, e.g. trace metals, at high spatial resolution.

Abstract. In-situ sampling of soil pore water is still a challenge for environmental scientists. Here, microdialysis is explored for probing metal concentrations in soil pore water at soil moisture contents ranging from 50 to 115% of the maximal water holding capacity and is compared with traditional sampling by suction cups. Metal concentrations obtained by the suction cup technique were consistently larger than those measured in the dialysate. Good agreement was obtained for Pb and Cu at soil moistures close to saturation after accounting for diffusion resistances whereas corrected Ni and Cd concentrations in the dialysates exceeded those measured by the suction cup technique. These deviations reflect inherent differences in the sampling mode and effects of soil heterogeneity at the microscale. Microdialysis offers new opportunities to probe solute concentrations at high spatial resolution and minimal disturbance of soil conditions at environmental interfaces such as the plant rhizosphere or at the transition between forest floors and the mineral soil.

Additional keywords: membrane-based separation, metals, probing, soil solution, trace elements.


Acknowledgements

The experimental work and the research stay of M. Miró at the University of Natural Resources and Applied Sciences were supported by a research grant (BOKU award).


References


[1]   Violante A., Huang P. M., Gadd G. M. (Eds), Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments 2008 (Wiley-Interscience: Hoboken, NJ).

[2]   Hämmann M., Desaules A., Sampling and Sample Pretreatment for Soil Pollutant Monitoring 2003 (Swiss Agency for the Environment, Forests and Landscape: Berne).

[3]   J. Hlavay , T. Prohaska , M. Weisz , W. W. Wenzel , G. J. Stingeder , Determination of trace elements bound to soils and sediment fractions. (IUPAC technical report). Pure Appl. Chem. 2004 , 76,  415.
        | CrossRef |  

[4]   H. Zhang , W. Davison , B. Knight , S. McGrath , In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT. Environ. Sci. Technol. 1998 , 32,  704.
        | CrossRef |  

[5]   Sposito G., The Chemistry of Soils 1989 (Oxford University Press: New York).

[6]   L. Weihermüller , J. Siemens , M. Deurer , S. Knoblauch , H. Rupp , A. Göttlein , T. Pütz , In situ soil water extraction: a review. J. Environ. Qual. 2007 , 36,  1735.
        | CrossRef | PubMed |  

[7]   M. Puschenreiter , W. W. Wenzel , G. Wieshammer , W. J. Fitz , S. Wieczorek , K. Kanitsar , G. Köllensperger , Novel micro suction cup design for sampling soil solution at defined distances from roots. J. Plant Nutr. Soil Sci. 2005 , 168,  386.
        | CrossRef |  

[8]   J. Grossmann , P. Udluft , The extraction of soil water by suction-cup method: a review. J. Soil Sci. 1991 , 42,  83.
        | CrossRef |  

[9]   A. Göttlein , U. Hell , R. Blasek , A system for microscale tensiometry and lysimetry. Geoderma 1996 , 69,  147.
        | CrossRef |  

[10]   B. L. Haines , J. B. Waide , R. L. Todd , Soil solution nutrient concentrations sampled with tension and zero-tension lysimeters: report of discrepancies. Soil Sci. Soc. Am. J. 1982 , 46,  658.
         

[11]   P. Hinsinger , C. Plassard , B. Jaillard , Rhizosphere: a new frontier for soil biogeochemistry. J. Geochem. Explor. 2006 , 88,  210.
        | CrossRef |  

[12]   J. P. Walker , G. R. Willgoose , J. D. Kalma , In situ measurement of soil moisture: a comparison of techniques. J. Hydrol. 2004 , 293,  85.
        | CrossRef |  

[13]   J. Artigas , C. Jiménez , S. G. Lemos , A. R. A. Nogueira , A. Torre-Neto , J. Alonso , Development of a screen-printed thick-film nitrate sensor based on a graphite-epoxy composite for agricultural applications. Sens. Actuat. B 2003 , 88,  337.
        | CrossRef |  

[14]   S. G. Lemos , A. R. A. Nogueira , A. Torre-Neto , A. Parra , J. Artigas , J. Alonso , In-soil potassium sensor system. J. Agric. Food Chem. 2004 , 52,  5810.
        | CrossRef | PubMed |  

[15]   N. Torto , J. Mwatseteza , T. Laurell , Microdialysis sampling – challenges and new frontiers. LC-GC Europe 2001 , 14,  536.
         

[16]   M. Miró , W. Frenzel , Implantable flow-through capillary-type microdialyzers for continuous in situ monitoring of environmentally relevant parameters. Anal. Chem. 2004 , 76,  5974.
        | CrossRef | PubMed |  

[17]   Stenken J. A., Microdialysis sampling, in Encyclopedia of Medical Devices and Instrumentation, 2nd edn (Ed. J. G. Webster) 2006, Vol. 4, pp. 400–420 (Wiley: Hoboken, NJ).

[18]   M. I. Davies , A review of microdialysis sampling for pharmacokinetic applications. Anal. Chim. Acta 1999 , 379,  227.
        | CrossRef |  

[19]   M. C. Parkin , S. E. Hopwood , M. G. Boutelle , A. J. Strong , Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. Trends Analyt. Chem. 2003 , 22,  487.
        | CrossRef |  

[20]   Brunner M., Müller M., Microdialysis in clinical drug delivery studies, in Handbook of Microdialysis – Methods, Applications and Perspectives (Eds B. H. C. Westerink, T. I. F. H. Cremers) 2006, pp. 625–644 (Elsevier: Amsterdam).

[21]   N. Torto , L. Gorton , T. Laurell , G. Marko-Varga , Technical issues of in vitro microdialysis sampling in bioprocess monitoring. Trends Anal. Chem. 1999 , 18,  252.
        | CrossRef |  

[22]   N. C. van de Merbel , H. Lingeman , U. A. Th. Brinkman , Sampling and analytical strategies in on-line bioprocess monitoring and control. J. Chromatogr. A 1996 , 725,  13.
        | CrossRef |  

[23]   S. Mannino , M. S. Cosio , Determination of ascorbic acid in foodstuffs by microdialysis sampling and liquid chromatography with electrochemical detection. Analyst 1997 , 122,  1153.
        | CrossRef | PubMed |  

[24]   M.-C. Wei , C.-T. Chang , J.-F. Jen , Determination of organic acids in fermentation products of milk with high performance liquid chromatography/on-line micro-dialysis. Chromatographia 2001 , 54,  601.
        | CrossRef |  

[25]   J.-F. Jen , T.-C. Liu , Determination of phthalate esters from food-contacted materials by on-line microdialysis and liquid chromatography. J. Chromatogr. A 2006 , 1130,  28.
        | CrossRef | PubMed |  

[26]   C.-H. Lin , H.-L. Wu , Y.-L. Huang , Combining high-performance liquid chromatography with on-line microdialysis sampling for the simultaneous determination of ascorbyl glucoside, kojic acid, and niacinamide in bleaching cosmetics. Anal. Chim. Acta 2007 , 581,  102.
        | CrossRef | PubMed |  

[27]   C.-H. Lin , H.-L. Wu , Y.-L. Huang , Microdialysis sampling coupled to on-line high performance liquid chromatography for determination of arbutin in whitening cosmetics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005 , 829,  149.
        | CrossRef |  

[28]   N. Torto , J. Mwatseteza , G. Sawula , A study of microdialysis sampling of metal ions. Anal. Chim. Acta 2002 , 456,  253.
        | CrossRef |  

[29]   M. Miró , W. Frenzel , The potential of microdialysis as an automatic sample-processing technique for environmental research. Trends Anal. Chem. 2005 , 24,  324.
        | CrossRef |  

[30]   N. Torto , B. Lobelo , L. Gorton , Determination of saccharides in wastewater from the beverage industry by microdialysis sampling, microbore high performance anion exchange chromatography and integrated pulsed electrochemical detection. Analyst 2000 , 125,  1379.
        | CrossRef |  

[31]   J.-F. Jen , C.-T. Chang , T. C. Yang , On-line microdialysis–high-performance liquid chromatographic determination of aniline and 2-chloroaniline in polymer industrial wastewater. J. Chromatogr. A 2001 , 930,  119.
        | CrossRef | PubMed |  

[32]   D. Mogopodi , N. Torto , Maximising metal ions flux across a microdialysis membrane by incorporating poly-l-aspartic acid, poly-l-histidine, 8-hydroxyquinoline and ethylenediaminetetraacetic acid in the perfusion liquid. Anal. Chim. Acta 2005 , 534,  239.
        | CrossRef |  

[33]   M. Sulyok , M. Miró , G. Stingeder , G. Koellensperger , The potential of flow-through microdialysis for probing low-molecular weight organic anions in rhizosphere soil solution. Anal. Chim. Acta 2005 , 546,  1.
        | CrossRef |  

[34]   M. Miró , M. Jimoh , W. Frenzel , A novel dynamic approach for automatic microsampling and continuous monitoring of metal ion release from soils exploiting a dedicated flow-through microdialyser. Anal. Bioanal. Chem. 2005 , 382,  396.
        | CrossRef | PubMed |  

[35]   D. Mogopodi , N. Torto , Enhancing microdialysis recovery of metal ions by incorporating poly-L-aspartic acid and poly-L-histidine in the perfusion liquid. Anal. Chim. Acta 2003 , 482,  91.
        | CrossRef |  

[36]   N. Torto , E. Peloewetse , B. Lobelo , J. Mwatseteza , Profiling of wastewater effluent from a beverage industry by microdialysis sampling and a combination of analytical techniques. Environ. Sci. 2006 , 1,  1.
         

[37]   S. N. Zhou , K. D. Oakes , M. R. Servos , J. Pawliszyn , Use of simultaneous dual-probe microdialysis for the determination of pesticide residues in a jade plant (Crassula ovata). Analyst 2009 , 134,  748.
        | CrossRef | PubMed |  

[38]   K. Mosetlha , N. Torto , G. Wibetoe , Determination of Cu and Ni in plants by microdialysis sampling: comparison of dialyzable metal fractions with total metal content. Talanta 2007 , 71,  766.
        | CrossRef | PubMed |  

[39]   Tinker P. B., Nye P. H., Solute Movement in the Rhizosphere 2000 (Oxford University Press: New York).

[40]   Blum W. E. H., Spiegel H., Wenzel W. W. (Eds), Bodenzustandsinventur. Konzeption, Durchführung und Bewertung, 2nd edn 1996, pp. 52–74 (Bundesministerium für Land und Forstwirtschaft: Vienna).

[41]   I. Molina Millán , W. J. Fitz , R. Unterbrunner , W. W. Wenzel , Comparison of methods for measuring metal desorption from soils for parameterising rhizosphere models. Eur. J. Soil Sci. 2006 , 57,  38.
        | CrossRef |  

[42]   Miró-Lladó M., Frenzel W., Microdialysis probe for automatic sampling and continuous monitoring of analytical parameters in solid samples. Patent no. ES2272135 2007.

[43]   M. Miró , W. Frenzel , Investigation of chemical effects on the performance of flow-through dialysis applied to the determination of ionic species. Anal. Chim. Acta 2004 , 512,  311.
        | CrossRef |  

[44]   P. M. Bungay , P. F. Morrison , R. L. Dedrick , Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci. 1990 , 46,  105.
        | CrossRef | PubMed |  

[45]   J. K. Hsiao , B. A. Ball , P. F. Morrison , I. N. Mefford , P. M. Bungay , Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J. Neurochem. 1990 , 54,  1449.
        | CrossRef | PubMed |  

[46]   W. W. Wenzel , R. S. Sletten , A. Brandstetter , G. Wieshammer , G. Stingeder , Adsorption of trace metals by tension lysimeters: nylon membrane vs. ceramic cup. J. Environ. Qual. 1997 , 26,  1430.
         

[47]   B. P. Knight , A. M. Chaudri , S. P. McGrath , K. E. Giller , Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environ. Pollut. 1998 , 99,  293.
        | CrossRef | PubMed |  

[48]   J. A. Stenken , Methods and issues in microdialysis calibration. Anal. Chim. Acta 1999 , 379,  337.
        | CrossRef |  

[49]   Miller J. N., Miller J. C., Significance tests, in Statistics and Chemometrics for Analytical Chemistry 2005, Ch. 3, pp. 39–41 (Person Education Ltd: Harlow, UK).

[50]   H. Ernstberger , W. Davison , H. Zhang , A. Tye , S. Young , Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS. Environ. Sci. Technol. 2002 , 36,  349.
        | CrossRef | PubMed |  

[51]   J. L. Peters , H. Yang , A. C. Michael , Quantitative aspects of brain microdialysis. Anal. Chim. Acta 2000 , 412,  1.
        | CrossRef |  

[52]   T. Olesen , P. Moldrup , T. Yamaguchi , D. E. Rolston , Constant slope impedance factor model for predicting the solute diffusion coefficient in unsaturated soil. Soil Sci. 2001 , 166,  89.
        | CrossRef |  

[53]   J. Buffle , Z. Zhang , K. Startchev , Metal flux and dynamic speciation at (bio)interfaces. Part I. Critical evaluation and compilation of physico-chemical parameters for complexes with simple ligands and fulvic substances. Environ. Sci. Technol. 2007 , 41,  7609.
        | CrossRef | PubMed |  

[54]   L. Weihermüller , R. Kasteel , H. Vereecken , Soil heterogeneity effects on solute breakthrough sampled with suction cups: numerical simulations. Vadose Zone J. 2006 , 5,  886.
        | CrossRef |  

[55]   Adriano D. C., Trace elements in terrestrial environments, 2nd edn 2001, pp. 61–89 (Springer-Verlag: New York).

[56]   A. L. Nolan , E. Lombi , M. J. McLaughlin , Metal bioaccumulation and toxicity in soils – why bother with speciation? Aust. J. Chem. 2003 , 56,  77.
        | CrossRef |  

[57]   P. Hinsinger , G. R. Gobran , P. J. Gregory , W. W. Wenzel , Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol. 2005 , 168,  293.
        | CrossRef | PubMed |  

[58]   J. H. Huang , E. Matzner , Fluxes of inorganic and organic arsenic species in a Norway spruce forest floor. Environ. Pollut. 2007 , 149,  201.
        | CrossRef | PubMed |  

[59]   H. Zhang , W. Davison , S. Miller , W. Tych , In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in pore waters by DGT. Geochim. Cosmochim. Acta 1995 , 59,  4181.
        | CrossRef |  

[60]   H. Ernstberger , W. Davison , H. Zhang , A. Tye , S. Young , Measurement and dynamic modelling of trace metal mobilization in soils using DGT and DIFS. Environ. Sci. Technol. 2002 , 36,  349.
        | CrossRef | PubMed |  

[61]   W. J. Fitz , W. W. Wenzel , H. Zhang , J. Nurmi , K. Stipek , Z. Fischerova , P. Schweiger , G. Köllensperger , L. Q. Ma , G. Stingeder , Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ. Sci. Technol. 2003 , 37,  5008.
        | CrossRef | PubMed |  



Rent Article (via Deepdyve) Export Citation Cited By (11)