Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Phase II pharmaceutical metabolites acetaminophen glucuronide and acetaminophen sulfate in wastewater

Manjula Sunkara A B and Martha J. M. Wells A C

A Center for the Management, Utilisation, and Protection of Water Resources and Department of Chemistry, Tennessee Technological University, Box 5033, Cookeville, TN 38505, USA.

B Present address: Internal Medicine, University of Kentucky, B0248C BBSRB, 741 South Limestone, Lexington, KY 40536, USA.

C Corresponding author. Email: mjmwells@tntech.edu

Environmental Chemistry 7(1) 111-122 https://doi.org/10.1071/EN09098
Submitted: 4 August 2009  Accepted: 11 December 2009   Published: 22 February 2010

Environmental context. Excretion of pharmaceuticals and their metabolites by humans and animals, flushing unused pharmaceuticals and inadequate water treatment result in the occurrence of these chemicals as pollutants in wastewater, surface water and drinking water. In this research, the pharmaceutical agent acetaminophen (paracetamol, Tylenol) and its glucuronide and sulfate metabolites were examined as a model system for monitoring wastewater influent and effluent. The true risk to ecosystems and humans from the occurrence of pharmaceuticals in our water supply can only be estimated if accurate concentrations of parent pharmaceutical chemicals as well as their metabolites are measured.

Abstract. An analytical method was developed to separately determine acetaminophen and its Phase II metabolites, acetaminophen glucuronide and acetaminophen sulfate, from wastewater in a single extract. The method developed will serve as a model for screening for the presence of other non-steroidal pharmaceutical compounds and their Phase II metabolites in wastewater. Acetaminophen glucuronide was not present in the wastewater influent tested to verify the analytical protocol, whereas concentrations of acetaminophen and acetaminophen sulfate in the influent were reproducible over time. A Phase I metabolite, p-aminophenol, was also determined to occur in the wastewater influent. Concentrations of the analytes-of-interest, detected in effluent samples collected after secondary treatment, but before UV treatment, were highly variable and were undetectable after UV treatment before release to surface water.

Additional keywords: conjugates, pharmaceuticals, Phase I and Phase II metabolites, wastewater treatment.


Acknowledgements

Assistance from Sandra Dodson, Amy Knox, Gene Mullins and Sandra Pigg is gratefully acknowledged.


References


[1]   D. W. Kolpin , E. T. Furlong , M. T. Meyer , E. M. Thurman , S. D. Zaugg , L. B. Barber , H. T. Buxton , Pharmaceuticals, hormones, and other organic wastewater contaminants, in US streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 2002 , 36,  1202.
        | CrossRef | CAS | PubMed |  open url image1

[2]   Donn J., Mendoza M., Pritchard J., PharmaWater I 2008 (Associated Press Archives). Available at http://nl.newsbank.com/nl-search/we/Archives?p_action=print [Verified October 2008]

[3]   Donn J., Mendoza M., Pritchard J., PharmaWater II 2008 (Associated Press Archives). Available at http://nl.newsbank.com/nl-search/we/Archives?p_action=print [Verified October 2008]

[4]   Donn J., Mendoza M., Pritchard J., PharmaWater III 2008 (Associated Press Archives). Available at http://nl.newsbank.com/nl-search/we/Archives?p_action=print [Verified October 2008]

[5]   K. Levsen , S. Hans-Martin , B. Behnke , R. Dotzer , W. Dreher , M. Elend , H. Thiele , Structure elucidation of Phase II metabolites by tandem mass spectrometry: an overview. J. Chromatogr. A 2005 , 1067,  55.
        | CrossRef | CAS | PubMed |  open url image1

[6]   Niessen W., Liquid ChromatographyMass Spectrometry, 3rd edn 2006, pp. 276–278 (CRC Press: Boca Raton, FL).

[7]   M. J. M. Wells , log DOW: key to understanding and regulating wastewater-derived contaminants. Environ. Chem. 2006 , 3,  439.
        | CrossRef | CAS |  open url image1

[8]   M. J. M. Wells , M.-L. Pellegrin , A. Morse , K. Y. Bell , L. J. Fono , Emerging pollutants. Water Environ. Res. 2008 , 80,  2026.
        | CrossRef | CAS |  open url image1

[9]   M. J. M. Wells , A. Morse , K. Y. Bell , M.-L. Pellegrin , L. J. Fono , Emerging pollutants. Water Environ. Res. 2009 , 81,  2211.
        | CrossRef | CAS |  open url image1

[10]   O. A. H. Jones , N. Voulvoulis , J. N. Lester , Analytical method development for the simultaneous determination of five human pharmaceuticals in water and wastewater samples by gas chromatography-mass spectrometry. Chromatographia 2003 , 58,  471.
        |  CAS |  open url image1

[11]   T. A. Ternes , P. Kreckel , J. Mueller , Behaviour and occurrence of estrogens in municipal sewage treatment plants – II. Aerobic batch experiments with activated sludge. Sci. Total Environ. 1999 , 225,  91.
        | CrossRef | CAS | PubMed |  open url image1

[12]   A. Gentili , D. Perret , S. Marchese , R. Mastropasqua , R. Curini , A. Di Corcia , Analysis of free estrogens and their conjugates in sewage and river waters by solid-phase extraction then liquid chromatography-electrospray-tandem mass spectrometry. Chromatographia 2002 , 56,  25.
        | CrossRef | CAS |  open url image1

[13]   G. D’Ascenzo , A. Di Corcia , A. Gentili , R. Mancini , R. Mastropasqua , M. Nazzari , R. Samperi , Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci. Total Environ. 2003 , 302,  199.
        | CrossRef | CAS | PubMed |  open url image1

[14]   K. Komori , H. Tanaka , Y. Okayasu , M. Yasojima , C. Sato , Analysis and occurrence of estrogen in wastewater in Japan. Water Sci. Technol. 2004 , 50,  93.
        |  CAS | PubMed |  open url image1

[15]   S. Reddy , C. R. Iden , B. J. Brownawell , Analysis of steroid conjugates in sewage influent and effluent by liquid chromatography–tandem mass spectrometry. Anal. Chem. 2005 , 77,  7032.
        | CrossRef | CAS | PubMed |  open url image1

[16]   S. R. Hutchins , M. V. White , F. M. Hudson , D. D. Fine , Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates. Environ. Sci. Technol. 2007 , 41,  738.
        | CrossRef | CAS | PubMed |  open url image1

[17]   T. Isobe , H. Shiraishi , M. Yasuda , A. Shinoda , H. Suzuki , M. Morita , Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2003 , 984,  195.
        | CrossRef | CAS | PubMed |  open url image1

[18]   F. Tilton , W. H. Benson , D. Schlenk , Evaluation of estrogenic activity from a municipal wastewater treatment plant with predominantly domestic input. Aquat. Toxicol. 2002 , 61,  211.
        | CrossRef | CAS | PubMed |  open url image1

[19]   A. Nieto , F. Borrull , E. Pocurull , R. M. Marce , Determination of natural and synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2008 , 1213,  224.
        | CrossRef | CAS | PubMed |  open url image1

[20]   M. P. Fernandez , T.-N. Noguerol , S. Lacorte , I. Buchanan , B. Pina , Toxicity identification fractionation of environmental estrogens in waste water and sludge using gas and liquid chromatography coupled to mass spectrometry and recombinant yeast assay. Anal. Bioanal. Chem. 2009 , 393,  957.
        | CrossRef | CAS | PubMed |  open url image1

[21]   S. Castiglioni , E. Zuccato , E. Crisci , C. Chiabrando , R. Fanelli , R. Bagnati , Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography–tandem mass spectrometry. Anal. Chem. 2006 , 78,  8421.
        | CrossRef | CAS | PubMed |  open url image1

[22]   C. Postigo , M. J. Lopez de Alda , D. Barcelo , Fully automated determination in the low nanogram per liter level of different classes of drugs of abuse in sewage water by on-line solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Anal. Chem. 2008 , 80,  3123.
        | CrossRef | CAS | PubMed |  open url image1

[23]   Wells M. J. M., Principles of extraction and the extraction of semivolatile organics from liquids, in Sample Preparation Techniques in Analytical Chemistry (Ed. S. Mitra) 2003, pp. 37–138 (Wiley: Hoboken, NJ).

[24]   M. J. M. Wells , C. R. Clark , Liquid chromatographic elution characteristics of some solutes used to measure column void volume on C18 bonded phases. Anal. Chem. 1981 , 53,  1341.
        | CrossRef | CAS |  open url image1

[25]   M. V. Vertzoni , H. A. Archontaki , P. Galanopoulou , Development and optimization of a reversed-phase high-performance liquid chromatographic method for the determination of acetaminophen and its major metabolites in rabbit plasma and urine after a toxic dose. J. Pharm. Biomed. Anal. 2003 , 32,  487.
        | CrossRef | CAS | PubMed |  open url image1

[26]   A. K. Hewavitharana , S. Lee , P. A. Dawson , D. Markovich , P. N. Shaw , Development of an HPLC–MS/MS method for the selective determination of paracetamol metabolites in mouse urine. Anal. Biochem. 2008 , 374,  106.
        | CrossRef | CAS | PubMed |  open url image1

[27]   R. Kostiainen , T. Kotiaho , T. Kuuranne , S. Auriola , Liquid chromatography/atmospheric pressure ionization–mass spectrometry in drug metabolism studies. J. Mass Spectrom. 2003 , 38,  357.
        | CrossRef | CAS | PubMed |  open url image1

[28]   J. L. Santos , I. Aparicio , E. Alonso , M. Callejon , Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal. Chim. Acta 2005 , 550,  116.
        | CrossRef | CAS |  open url image1

[29]   S. Taniyasu , K. Kannan , M. K. So , A. Gulkowska , E. Sinclair , T. Okazawa , N. Yamashita , Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. J. Chromatogr. A 2005 , 1093,  89.
        | CrossRef | CAS | PubMed |  open url image1

[30]   Young M. S., Tran K., SPE considerations for UPLC-MS determination of perfluorinated carboxylic acids and perfluorosulfonates in various matrices, in Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environmental Chemistry, San Francisco, CA, 10–14 September 2006, Vol. 46(2), pp. 835–839 (Division of Environmental Chemistry, American Chemical Society).

[31]   H. Filik , M. Hayvali , E. Kilic , R. Apak , D. Aksu , Z. Yanaz , T. Cengel , Development of an optical fibre reflectance sensor for p-aminophenol detection based on immobilised bis-8-hydroxyquinoline. Talanta 2008 , 77,  103.
        | CrossRef | CAS | PubMed |  open url image1

[32]   C. T. Jafvert , J. C. Westall , E. Grieder , R. P. Schwarzenbach , Distribution of hydrophobic ionogenic organic compounds between octanol and water: organic acids. Environ. Sci. Technol. 1990 , 24,  1795.
        | CrossRef | CAS |  open url image1

[33]   Schwarzenbach R. P., Gschwend P. M., Imboden D. M., Environmental Organic Chemistry, 2nd edn 2003, pp. 270–272 (Wiley–Interscience: Hoboken, NJ).

[34]   Comer J. E. A., High-throughput measurement of log D and pKa, in Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability (Eds H. van de Waterbeemd, H. Lennernas, P. Artursson) 2003, pp. 21–25 (Wiley–VCH: Weinheim).

[35]   Bhal S. K., ACD/Labs PhysChem Software Application Notes 2007. Available at http://www.acdlabs.com/appnotes/physchem/ [Verified April 2009]



Rent Article (via Deepdyve) Export Citation Cited By (5)