Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Assessment of cultured fish hepatocytes for studying cellular uptake and (eco)toxicity of nanoparticles

Tessa M. Scown A F , Rhys M. Goodhead A F , Blair D. Johnston A , Julian Moger B , Mohammed Baalousha C , Jamie R. Lead C , Ronny van Aerle A , Taisen Iguchi D and Charles R. Tyler A E
+ Author Affiliations
- Author Affiliations

A Ecotoxicology and Aquatic Biology Research Group, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK.

B Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK.

C School of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

D Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.

E Corresponding author. Email: c.r.tyler@exeter.ac.uk

F Co-first authors. Email: t.m.scown@exeter.ac.uk; r.m.goodhead@exeter.ac.uk

Environmental Chemistry 7(1) 36-49 https://doi.org/10.1071/EN09125
Submitted: 2 October 2009  Accepted: 22 December 2009   Published: 22 February 2010

Environmental context. The production and application of engineered nanoparticles is rapidly increasing, and development of suitable models for screening nanoparticles for possible toxic effects is essential to protect aquatic organisms and support the sustainable development of the nanotechnology industry. Here, the suitability of isolated rainbow trout hepatocytes was assessed for high through-put toxicity screening of nanoparticles and for studying uptake of nanoparticles into cells.

Abstract. Relatively little is known regarding the fate and possible toxic effects of engineered nanoparticles (ENPs) in the aquatic environment. We assessed the suitability of isolated trout hepatocytes for high throughput toxicity screening of ENPs, exposing them to a variety of metal and metal oxide nanoparticles and their bulk counterparts. We found no effects of the ENPs on cell viability, or on lipid peroxidation, with the exception of exposure to ZnO nanoparticles, or on glutathione-S-transferase (GST) levels, for exposure concentrations up to 500 μg mL–1. All ENPs, however, were internalised in the cultured hepatocytes, as shown by coherent anti-Stokes Raman scattering (CARS) as an imaging technique. Our findings suggest that fish hepatocyte cultures are suitable for studies investigating the cellular uptake of ENPs, but they do not appear to be sensitive to ENP exposure and thus not a good in vitro model for nanoparticle toxicity screening.

Additional keywords: coherent anti-Stokes Raman scattering, in vitro, metal oxides, rainbow trout, silver.


Acknowledgements

This work was supported by the Natural Environment Research Council [NER/S/A/2005/13319 NE/D004942/1, NE/C002369/1 and the UK Environment Agency to C.R.T. and R.v.A.]. The NERC Facility FENAC (Birmingham, UK) is acknowledged for help with nanoparticle characterisation. We thank Chris Pook for help with the GST assay, Dr Anke Lange and Dr Lisa Bickley for help with the hepatocyte isolations. All investigations were performed in accordance with the Animals (Scientific Procedures) Act, 1986 (UK).


References


[1]   Dowling A., Clift R., Grobert N., Hutton D., Oliver R., O’Neill O., Pethica J., Pidgeon N., Porritt J., Ryan J., Seaton A., Tendler S., Welland M, Whatmore R., Nanoscience and nanotechnologies: opportunities and uncertainties 2004 (The Royal Society, The Royal Academy of Engineering: London).

[2]   R. J. Aitken , M. Q. Chaudhry , A. B. A. Boxall , H. Hull , Manufacture and use of nanomaterials: current status in the UK and global trends. Occup. Med. 2006 , 56,  300.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   Government funding, companies and applications in nanotechnology worldwide 2007 (Technology Transfer Centre, Institute of Nanotechnology: Stirling, UK).

[4]   I. Beck-Speier , N. Dayal , E. Karg , K. L. Maier , G. Schumann , H. Schulz , M. Semmler , S. Takenaka , et al. Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic. Biol. Med. 2005 , 38,  1080.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   J.-R. Gurr , A. S. S. Wang , C.-H. Chen , K.-Y. Jan , Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005 , 213,  66.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   C. M. Sayes , R. Wahi , P. A. Kurian , Y. P. Liu , J. L. West , K. D. Ausman , D. B. Warheit , V. L. Colvin , Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 2006 , 92,  174.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   M. Geiser , B. Rothen-Rutishauser , N. Kapp , S. Schurch , W. Kreyling , H. Schulz , M. Semmler , V. Im Hoff , J. Heyder , P. Gehr , Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and cultured cells. Environ. Health Perspect. 2005 , 113,  1555.
        | PubMed |  open url image1

[8]   Z. Pan , W. Lee , L. Slutsky , R. A. Clark , N. Pernodet , M. H. Rafailovich , Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 2009 , 5,  511.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   S. Lu , R. Duffin , C. Poland , P. Daly , F. Murphy , E. Drost , W. MacNee , V. Stone , K. Donaldson , Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ. Health Perspect. 2009 , 117,  241.
        |  CAS | PubMed |  open url image1

[10]   L. Bickley , A. Lange , M. Winter , C. Tyler , Fish hepatocyte cultures as an alternative to in vivo tests for screening oestrogen receptor active chemicals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007 , 146,  S72.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   M. Strmac , T. Braunbeck , Cytological and biochemical effects of a mixture of 20 pollutants on isolated rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicol. Environ. Saf. 2002 , 53,  293.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   R. F. Domingos , N. Tufenkji , K. J. Wilkinson , Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 2009 , 43,  1282.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   K. F. Soto , A. Carrasco , T. G. Powell , K. M. Garza , L. E. Murr , Comparative in vitro cytotoxicity of some manufactureed nanoparticulate materials characterized by transmission electron microscopy. J. Nanopart. Res. 2005 , 7,  145.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   A. Petri-Fink , B. Steitz , A. Finka , J. Salaklang , H. Hofmann , Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur. J. Pharm. Biopharm. 2008 , 68,  129.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   Q.-L. Fan , K.-G. Neoh , E.-T. Kang , B. Shuter , S.-C. Wang , Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials 2007 , 28,  5426.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   J. Cheng , C. M. Chan , L. M. Veca , W. L. Poon , P. K. Chan , L. Qu , Y.-P. Sun , S. H. Cheng , Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 2009 , 235,  216.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   K. J. Lee , P. D. Nallathamby , L. M. Browning , C. J. Osgood , X.-H. Xu , In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007 , 1,  133.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   J.-Y. Roh , S. J. Sim , J. Yi , K. Park , K. H. Chung , D.-Y. Ryu , J. Choi , Ecotoxicity of silver nanoparticles on the soil nematode Caenohabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. 2009 , 43,  3933.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   J. Moger , B. D. Johnston , C. R. Tyler , Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Opt. Express 2008 , 16,  3408.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   C. Risso-de Faverney , A. Devaux , M. Lafaurie , J. P. Girard , R. Rahmani , Toxic effects of wasteaters collected at upstream and downstream sites of a purification station in cultures of rainbow trout hepatocytes. Arch. Environ. Contam. Toxicol. 2001 , 41,  129.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[21]   B. V. Derjaguin , L. D. Landau , Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim URSS 1941 , 14,  633.
         open url image1

[22]   Verwey E. J. W., Overbeek J. T. G., Theory of the Stability of Lyophobic Colloids 1948 (Elsevier: Amsterdam).

[23]   G. Flouriot , G. Monod , Y. Valotaire , A. Devaux , J.-P. Cravedi , Xenobiotic metabolizing enzyme activities in aggregate culture of rainbow trout hepatocytes. Mar. Environ. Res. 1995 , 39,  293.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   J.-P. Cravedi , A. Paris , G. Monad , A. Devaux , G. Flouriot , Y. Valotaire , Maintenance of cytochrome P450 content and phase I and phase II enzyme activities in trout hepatocytes cultured as pheroidal aggregates. Comp. Biochem. Physiol. Part Toxicol. Pharmacol. 1996 , 113,  241.
         open url image1

[25]   A. Simon , B. Gouget , M. Mayne , N. Herlin , C. Reynaud , J. Degrouard , M. Carriere , In vitro investigation of TiO2, Al2O3, Au nanoparticles and mutli-walled carbon nanotubes cyto- and genotoxicity on lung, kidney cells and hepatocytes. Toxicol. Lett. 2007 , 172,  S36.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   S. M. Hussain , K. L. Hess , J. M. Gearhart , K. T. Geiss , J. J. Schlager , In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005 , 19,  975.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[27]   F. Gagné , D. Maysinger , C. André , C. Blaise , Cytotoxicity of aged cadmium-telluride quantum dots to rainbow trout hepatocytes. Nanotoxicology 2008 , 2,  113.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   J. G. Teeguarden , P. M. Hinderliter , G. Orr , B. D. Thrall , J. G. Pounds , Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 2006 , 95,  300.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[29]   L. K. Limbach , Y.-C. Li , R. N. Grass , T. J. Brunner , M. A. Hintermann , M. Muller , D. Gunther , W. J. Stark , Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration and diffusion at low concentrations. Environ. Sci. Technol. 2005 , 39,  9370.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   H. A. Jeng , J. Swanson , Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2006 , 41,  2699.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   H. Yang , C. Liu , D. Yang , H. Zhang , Z. Zhuge Xi , Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. 2009 , 29,  69.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[32]   S. J. Kemp , A. J. Thorley , J. Gorelik , M. J. Seckl , M. J. O’Hare , A. Arcaro , Y. Korchev , P. Goldstraw , T. D. Tetley , Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. Am. J. Respir. Cell Mol. Biol. 2008 , 39,  591.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   R. D. Handy , T. B. Henry , T. M. Scown , B. D. Johnston , C. R. Tyler , Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysis. Ecotoxicology 2008 , 17,  396.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   L. G. Rodriguez , S. J. Lockett , G. R. Holtom , Coherent anti-Stokes Raman scattering microscopy: a biological review. Cytometry A 2006 , 69A,  779.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   T. M. Scown , R. van Aerle , B. D. Johnston , S. Cumberland , J. R. Lead , R. Owen , C. R. Tyler , High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function. Toxicol. Sci. 2009 , 109,  372.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[36]   V. Sharma , R. K. Shukla , N. Saxena , D. Parmar , M. Das , A. Dhawan , DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 2009 , 185,  211.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[37]   X. Zhu , J. Wang , X. Zhang , Y. Chang , Y. Chen , The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 2009 , 20,  195103.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[38]   E. Navarro , F. Piccapietra , B. Wagner , F. Marconi , R. Kaegi , N. Odzak , L. Sigg , R. Behra , Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008 , 42,  8959.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[39]   N. M. Franklin , N. J. Rogers , S. C. Apte , G. E. Batley , G. E. Gadd , P. S. Casey , Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 2007 , 41,  8484.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[40]   M. F. Rahman , J. Wang , T. A. Patterson , U. T. Saini , B. L. Robinson , G. D. Newport , R. C. Murdock , J. J. Schlager , S. M. Hussain , S. F. Ali , Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 2009 , 187,  15.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[41]   W. F. Vevers , A. N. Jha , Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 2008 , 17,  410.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[42]   E. J. Park , J. Yi , Y. H. Chung , D.-Y. Ryu , J. Choi , K. Park , Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008 , 180,  222.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[43]   S. Arora , J. Jain , J. M. Rajwade , K. M. Paknikar , Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol. Lett. 2008 , 179,  93.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[44]   C. Carlson , A. M. Schrand , L. K. Braydich-Stolle , K. L. Hess , R. L. Jones , J. J. Schlager , S. M. Hussain , Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 2008 , 112,  13608.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[45]   Y.-H. Hsin , C.-F. Chen , S. Huang , T.-S. Shih , P.-S. Lai , P. J. Chueh , The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 2008 , 179,  130.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[46]   E.-J. Park , J. Choi , Y.-K. Park , K. Park , Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008 , 245,  90.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[47]   J. F. Reeves , S. J. Davies , N. J. F. Dodd , A. N. Jha , Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. 2008 , 640,  113.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[48]   D. A. Symonds , I. Merchenthaler , J. A. Flaws , Methoxychlor and estradiol induce oxidative stress DNA damage in the mouse ovarian surface epithelium. Toxicol. Sci. 2008 , 105,  182.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[49]   P. Hoarau , G. Garello , M. Gnassia-Barelli , M. Romeo , J.-P. Girard , Purification and partial characterization of seven glutathione-S-transferase isoforms from the clam Ruditapes decussatus. Eur. J. Biochem. 2002 , 269,  4359.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[50]   A. Meister , Glutathione metabolism and its selective modification. J. Biol. Chem. 1988 , 263,  17205.
        |  CAS | PubMed |  open url image1

[51]   A. Jemec , D. Drobne , M. Remškar , K. Sepčić , T. Tišler , Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environ. Toxicol. Chem. 2008 , 27,  1904.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[52]   D. Drobne , A. Jemec , Z. Pipan Tkalec , In vivo screening to determine hazards of nanoparticles: Nanosized TiO2. Environ. Pollut. 2009 , 157,  1157.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[53]   S. Pandey , S. Parvez , R. A. Ansari , M. Ali , M. Kaur , F. Hayat , F. Ahmad , S. Raisuddin , Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem. Biol. Interact. 2008 , 174,  183.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[54]   P. A. Walker , N. R. Bury , C. Hogstrand , Influence of culture conditions on metal-induced responses in a cultured rainbow trout gill epithelium. Environ. Sci. Technol. 2007 , 41,  6505.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[55]   E. M. Mager , H. Wintz , C. D. Vulpe , K. V. Brix , M. Grosell , Toxicogenomics of water chemistry influence on chronic lead exposure to the fathead minnow (Pimephales promelas). Aquat. Toxicol. 2008 , 87,  200.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[56]   M. Perez-Lopez , M. C. Novoa-Valinas , M. J. Melgar-Riol , Glutathione S-transferase cytosolic isoforms as biomarkers of polychlorinated biphenyl (Arochlor-1254) experimental contamination in rainbow trout. Toxicol. Lett. 2002 , 136,  97.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[57]   M. Pérez-López , P. Rouimi , L. Debrauwer , J. P. Cravedi , Glutathione-S-transferase subunits pattern in rainbow trout isolated hepatocytes. Mar. Environ. Res. 1998 , 46,  385.
        | Crossref |  open url image1

[58]   J. E. Klaunig , Establishment of fish hepatocyte cultures for use in in-vitro carcinogenicity studies. Natl. Cancer Inst. Monogr. 1984 , 65,  163.
        |  CAS | PubMed |  open url image1

[59]   C. R. Gioda , L. A. Lissner , A. Pretto , J. B. T. da Rocha , M. R. C. Schetinger , J. R. Neto , V. M. Morsch , V. L. Loro , Exposure to sublethal concentrations of Zn(II) and Cu(II) changes biochemical parameters in Leporinus obtusidens Chemosphere 2007 , 69,  170.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[60]   O. Fırat , H. Y. Çogun , S. Aslanyavrusu , F. Kargin , Antioxidant responses and metal accumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn plus Cd exposures. J. Appl. Toxicol. 2009 , 29,  295.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[61]   G. Atli , O. Alptekin , S. Tukel , M. Canli , Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus Comp. Biochem. Physiol. Part Toxicol. Pharmacol. 2006 , 143,  218.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[62]   M. K. Yeo , M. Kang , Effects of nanometre sized silver materials on biological toxicity during zebrafish embryogenesis. Bull. Korean Chem. Soc. 2008 , 29,  1179.
        |  CAS |  open url image1

[63]   L. K. Bickley , A. Lange , M. J. Winter , C. R. Tyler , Evaluation of a carp primary hepatocyte culture system for screening chemicals for oestrogenic activity. Aquat. Toxicol. 2009 , 94,  195.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[64]   S. M. Baksi , J. M. Frazier , Review: isolated fish hepatocytes – model systems for toxicology research. Aquat. Toxicol. 1990 , 16,  229.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[65]   J. H. Hanks , R. E. Wallace , Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. Exp. Biol. Med. 1949 , 71,  196.
        |  CAS | PubMed |  open url image1

[66]   S. J. Stohs , D. Bagchi , Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 1995 , 18,  321.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[67]   N. Ercal , H. Gurer-Orhan , N. Aykin-Burns , Toxic metals and oxidative stress. Part I: Mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 2001 , 1,  529.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[68]   E. Conner , R. Margulies , M. Liu , S. W. Smilen , R. F. Porges , C. Kwon , Vaginal delivery and serum markers of ischemia/reperfusion injury. Int. J. Gynaecol. Obstet. 2006 , 94,  96.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[69]   Z. Bouraoui , M. Banni , J. Ghedira , C. Clerandeau , H. Guerbej , J. F. Narbonne , H. Boussetta , Acute effects of cadmium on liver phase I and phase II enzymes and metallothionein accumulation on sea bream Sparus aurata Fish Physiol. Biochem. 2008 , 34,  201.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[70]   L. Canesi , A. Viarengo , C. Leonzio , M. Filippelli , G. Gallo , Heavy metals and glutathione metabolism in mussel tissues. Aquat. Toxicol. 1999 , 46,  67.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[71]   C. M. Wood , C. Hogstrand , F. Galvez , R. S. Munger , The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquat. Toxicol. 1996 , 35,  93.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[72]   A. E. Porter , M. Gass , K. Muller , J. N. Skepper , P. Midgley , M. Welland , Visualizing the uptake of C-60 to the cytoplasm and nucleaus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ. Sci. Technol. 2007 , 41,  3012.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1