Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Characterisation of lightly oxidised organic aerosol formed from the photochemical aging of diesel exhaust particles

Jesse H. Kroll A B F , Jared D. Smith C E , Douglas R. Worsnop D and Kevin R. Wilson C

A Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

B Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

C Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

D Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA 01821, USA.

E Present address: L. J. Smith and Associates, Rogers, AR 72756, USA.

F Corresponding author. Email: jhkroll@mit.edu

Environmental Chemistry 9(3) 211-220 http://dx.doi.org/10.1071/EN11162
Submitted: 17 December 2011  Accepted: 6 April 2012   Published: 20 June 2012

Environmental context. The effects of atmospheric fine particulate matter (aerosols) on climate and human health can be strongly influenced by the chemical transformations that the particles undergo in the atmosphere, but these ‘aging’ reactions are poorly understood. Here diesel exhaust particles are aged in the laboratory to better understand how they could evolve in the atmosphere, and subtle but unmistakable changes in their chemical composition are found. These results provide a more complete picture of the atmospheric evolution of aerosols for inclusion in atmospheric models.

Abstract. The oxidative aging of the semivolatile fraction of diesel exhaust aerosol is studied in order to better understand the influence of oxidation reactions on particle chemical composition. Exhaust is sampled from an idling diesel truck, sent through a denuder to remove gas-phase species and oxidised by hydroxyl (OH) radicals in a flow reactor. OH concentrations are chosen to approximately match the OH exposures a particle would experience over its atmospheric lifetime. Evolving particle composition is monitored using aerosol mass spectrometry in two different modes, electron impact ionisation (EI) for the measurement of elemental ratios and vacuum ultraviolet (VUV) photoionisation for the measurement of molecular components. Changes to mass spectra in both modes indicate major changes to particle composition over the range of OH exposures studied. The product aerosol is only lightly oxidised (O/C < 0.3), suggesting an intermediate oxidation state between primary organics and the highly oxidised organic aerosol observed in the atmosphere. These lightly oxidised organics appear to be composed of secondary organic aerosol from semivolatile species, as well as from heterogeneously oxidised particle-phase organics. Key chemical characteristics (elemental ratios, oxidation kinetics and mass spectrometric features) of the reaction system are examined in detail. Similarities between this laboratory-generated aerosol and ‘hydrocarbon-like organic aerosol’ (HOA) reported in ambient studies suggest that HOA might not be entirely primary in origin, as is commonly assumed, but rather might include a significant secondary component.


References

[1]  R. Bahreini, M. D. Keywood, N. L. Ng, V. Varutbangkul, S. Gao, R. C. Flagan, J. H. Seinfeld, D. R. Worsnop, J. L. Jimenez, Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer Environ. Sci. Technol. 2005, 39, 5674.
Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometerCrossRef | 1:CAS:528:DC%2BD2MXls1Wqtr0%3D&md5=1a5588ce120d2d388818ae0b98f5ea0cCAS | open url image1

[2]  P. S. Chhabra, R. C. Flagan, J. H. Seinfeld, Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer. Atmos. Chem. Phys. 2010, 10, 4111.
Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer.CrossRef | 1:CAS:528:DC%2BC3cXptFWhtbY%3D&md5=64261bcdd6aacd94d90d6c08a8770078CAS | open url image1

[3]  P. S. Chhabra, N. L. Ng, M. R. Canagaratna, A. L. Corrigan, L. M. Russell, D. R. Worsnop, R. C. Flagan, J. H. Seinfeld, Elemental composition and oxidation of chamber organic aerosol. Atmos. Chem. Phys. 2011, 11, 8827.
Elemental composition and oxidation of chamber organic aerosol.CrossRef | 1:CAS:528:DC%2BC3MXhsVyju7nF&md5=615981ae2d9e222f7e5f0fbda28b1cbfCAS | open url image1

[4]  C. L. Heald, J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, P. Artaxo, A. J. Weinheimer, A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett. 2010, 37, L08803.
A simplified description of the evolution of organic aerosol composition in the atmosphere.CrossRef | open url image1

[5]  J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, D. R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133.
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.CrossRef | 1:CAS:528:DC%2BC3MXovVGhuw%3D%3D&md5=1dab8e3c16047688989051db2562c7a6CAS | open url image1

[6]  A. L. Robinson, N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, S. N. Pandis, Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 2007, 315, 1259.
Rethinking organic aerosols: semivolatile emissions and photochemical aging.CrossRef | 1:CAS:528:DC%2BD2sXitFChsrs%3D&md5=4dc6b90f51ec79834cad499915e813b2CAS | open url image1

[7]  J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525.
Evolution of organic aerosols in the atmosphere.CrossRef | 1:CAS:528:DC%2BD1MXhsFensbjE&md5=d9c7580ed2340a3d184f8f5b2249b226CAS | open url image1

[8]  A. T. Lambe, J. Zhang, A. M. Sage, N. M. Donahue, Controlled OH radical production via ozone-alkene reactions for use in aerosol aging studies. Environ. Sci. Technol. 2007, 41, 2357.
Controlled OH radical production via ozone-alkene reactions for use in aerosol aging studies.CrossRef | 1:CAS:528:DC%2BD2sXhvFKrtrw%3D&md5=8ce7666362695f4d91686291adfb07c6CAS | open url image1

[9]  I. L. George, A. Vlasenko, J. G. Slowik, K. Broekhuizen, J. P. D. Abbatt, Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. Atmos. Chem. Phys. 2007, 7, 4187.
Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change.CrossRef | 1:CAS:528:DC%2BD2sXhtlWiurnI&md5=5e2fa716e0dc015dd135560d16d93018CAS | open url image1

[10]  V. F. McNeill, R. L. N. Yatavelli, J. A. Thornton, C. B. Stipe, O. Landgrebe, Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase. Atmos. Chem. Phys. 2008, 8, 5465.
Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase.CrossRef | 1:CAS:528:DC%2BD1cXhtlCnur%2FO&md5=fd39f0830a91f31d917d67bcd3be1c2bCAS | open url image1

[11]  I. J. George, J. Slowik, J. P. D. Abbatt, Chemical aging of ambient organic aerosol from heterogeneous reaction with hydroxyl radicals. Geophys. Res. Lett. 2008, 35, L13811.
Chemical aging of ambient organic aerosol from heterogeneous reaction with hydroxyl radicals.CrossRef | open url image1

[12]  I. J. George, J. P. D. Abbatt, Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation. Atmos. Chem. Phys. 2010, 10, 5551.
Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation.CrossRef | 1:CAS:528:DC%2BC3cXhtVCjsbzN&md5=4ebf61f7682e06ef89cd4881f47031a9CAS | open url image1

[13]  I. J. George, J. P. D. Abbatt, Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat. Chem. 2010, 2, 713.
Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals.CrossRef | 1:CAS:528:DC%2BC3cXhtVGmtbvN&md5=f11063830cc24be6072cbc0841f593c5CAS | open url image1

[14]  L. H. Renbaum, G. D. Smith, Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption. Atmos. Chem. Phys. 2011, 11, 6881.
Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption.CrossRef | 1:CAS:528:DC%2BC3MXht1yks73I&md5=3247442ecbae04f69e149770b130e4eaCAS | open url image1

[15]  J. D. Smith, J. H. Kroll, C. D. Cappa, D. L. Che, C. L. Liu, M. Ahmed, S. R. Leone, D. R. Worsnop, K. R. Wilson, The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. Atmos. Chem. Phys. 2009, 9, 3209.
The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols.CrossRef | 1:CAS:528:DC%2BD1MXosFKrs74%3D&md5=fec146b0bf599a37b94bf59411201489CAS | open url image1

[16]  J. H. Kroll, J. D. Smith, D. L. Che, S. H. Kessler, D. R. Worsnop, K. R. Wilson, Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys. Chem. Chem. Phys. 2009, 11, 8005.
Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol.CrossRef | 1:CAS:528:DC%2BD1MXhtVOrsLzF&md5=af84bf14823cfbebc8e075fa523893cbCAS | open url image1

[17]  D. L. Che, J. D. Smith, S. R. Leone, M. Ahmed, K. R. Wilson, Quantifying the reactive uptake of OH by organic aerosols in a continuous flow stirred tank reactor. Phys. Chem. Chem. Phys. 2009, 11, 7885.
Quantifying the reactive uptake of OH by organic aerosols in a continuous flow stirred tank reactor.CrossRef | 1:CAS:528:DC%2BD1MXhtVOrsLzN&md5=c8b349ffa41df6c48d1bbc9d3360cc8dCAS | open url image1

[18]  S. H. Kessler, J. D. Smith, D. L. Che, D. R. Worsnop, K. R. Wilson, J. H. Kroll, Chemical Sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan. Environ. Sci. Technol. 2010, 44, 7005.
Chemical Sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan.CrossRef | 1:CAS:528:DC%2BC3cXhtVansrrL&md5=b356369fa1066642df2207de6373cfd8CAS | open url image1

[19]  S. H. Kessler, T. Nah, K. E. Daumit, J. D. Smith, S. R. Leone, C. E. Kolb, D. R. Worsnop, K. R. Wilson, J. H. Kroll, OH-initiated heterogeneous aging of highly oxidized organic aerosol. J. Phys. Chem. A 2012, [Published online early 6 April, 2012]
OH-initiated heterogeneous aging of highly oxidized organic aerosol.CrossRef | open url image1

[20]  R. Chirico, P. F. DeCarlo, M. F. Heringa, T. Tritscher, R. Richter, A. S. H. Prevot, J. Dommen, E. Weingartner, G. Wehrle, M. Gysel, M. Laborde, U. Baltensperger, Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments. Atmos. Chem. Phys. 2010, 10, 11545.
Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments.CrossRef | 1:CAS:528:DC%2BC3MXmvFemsLo%3D&md5=f74678762c6aa98aeeff941ee8fa3e49CAS | open url image1

[21]  S. D. Shah, D. R. Cocker, J. W. Miller, J. M. Norbeck, Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines. Environ. Sci. Technol. 2004, 38, 2544.
Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines.CrossRef | 1:CAS:528:DC%2BD2cXhvFWht7s%3D&md5=97615a49e12179355d967d6bb409f4d5CAS | open url image1

[22]  M. J. Northway, J. T. Jayne, D. W. Toohey, M. R. Canagaratna, A. Trimborn, K. I. Akiyama, A. Shimono, J. L. Jimenez, P. F. DeCarlo, K. R. Wilson, D. R. Worsnop, Demonstration of a VUV lamp photoionization source for improved organic speciation in an aerosol mass spectrometer. Aerosol Sci. Technol. 2007, 41, 828.
Demonstration of a VUV lamp photoionization source for improved organic speciation in an aerosol mass spectrometer.CrossRef | 1:CAS:528:DC%2BD2sXhtVWku7%2FJ&md5=4fe425357ab0227269cfe9263ba27d15CAS | open url image1

[23]  A. C. Aiken, P. F. DeCarlo, J. L. Jimenez, Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Anal. Chem. 2007, 79, 8350.
Elemental analysis of organic species with electron ionization high-resolution mass spectrometry.CrossRef | 1:CAS:528:DC%2BD2sXhtFSqs73M&md5=a5ad4e3b6e4f0b01f3a59d1158085010CAS | open url image1

[24]  A. C. Aiken, P. F. Decarlo, J. H. Kroll, D. R. Worsnop, J. A. Huffman, K. S. Docherty, I. M. Ulbrich, C. Mohr, J. R. Kimmel, D. Sueper, Y. Sun, Q. Zhang, A. Trimborn, M. Northway, P. J. Ziemann, M. R. Canagaratna, T. B. Onasch, M. R. Alfarra, A. S. H. Prevot, J. Dommen, J. Duplissy, A. Metzger, U. Baltensperger, J. L. Jimenez, O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 2008, 42, 4478.
O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXlvVymsb8%3D&md5=4a4f2d1a7640c8e304c854394de55118CAS | open url image1

[25]  E. R. Mysak, K. R. Wilson, M. Jimenez-Cruz, M. Ahmed, T. Baer, Synchrotron radiation based aerosol time-of-flight mass spectrometry for organic constituents. Anal. Chem. 2005, 77, 5953.
Synchrotron radiation based aerosol time-of-flight mass spectrometry for organic constituents.CrossRef | 1:CAS:528:DC%2BD2MXotVSlsbc%3D&md5=5c47892748a4636a1b5919f2fbc6c1fbCAS | open url image1

[26]  E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, K. R. Wilson, Investigating the chemical composition of mixed organic-inorganic particles by ‘soft’ vacuum ultraviolet photoionization: the reaction of ozone with anthracene on sodium chloride particles. Int. J. Mass Spectrom. 2006, 258, 74.
Investigating the chemical composition of mixed organic-inorganic particles by ‘soft’ vacuum ultraviolet photoionization: the reaction of ozone with anthracene on sodium chloride particles.CrossRef | 1:CAS:528:DC%2BD28XhtFOjur7I&md5=6b7c34c51474a7773dc62634d728d5e8CAS | open url image1

[27]  S. R. Leone, M. Ahmed, K. R. Wilson, Chemical dynamics, molecular energetics, and kinetics at the synchrotron. Phys. Chem. Chem. Phys. 2010, 12, 6564.
Chemical dynamics, molecular energetics, and kinetics at the synchrotron.CrossRef | 1:CAS:528:DC%2BC3cXnsFGgsrg%3D&md5=bc874298654d015072ed9e78e66c6264CAS | open url image1

[28]  K. R. Wilson, M. Jimenez-Cruz, C. Nicolas, L. Belau, S. R. Leone, M. Ahmed, Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine–glycine–glycine, and β-carotene. J. Phys. Chem. A 2006, 110, 2106.
Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine–glycine–glycine, and β-carotene.CrossRef | 1:CAS:528:DC%2BD2MXhtlajtrrK&md5=75c130adacff8de7b24ec4089a95fbe8CAS | open url image1

[29]  P. DeCarlo, J. G. Slowik, D. R. Worsnop, P. Davidovits, J. L. Jimenez, Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci. Technol. 2004, 38, 1185.
| 1:CAS:528:DC%2BD2MXhsFGmuw%3D%3D&md5=257db3d4a623fcbcda039ebfee8237d7CAS | open url image1

[30]  J. Duplissy, P. F. DeCarlo, J. Dommen, M. R. Alfarra, A. Metzger, I. Barmpadimos, A. S. H. Prevot, E. Weingartner, T. Tritscher, M. Gysel, A. C. Aiken, J. L. Jimenez, M. R. Canagaratna, D. R. Worsnop, D. R. Collins, J. Tomlinson, U. Baltensperger, Relating hygroscopicity and composition of organic aerosol particulate matter. Atmos. Chem. Phys. 2011, 11, 1155.
Relating hygroscopicity and composition of organic aerosol particulate matter.CrossRef | 1:CAS:528:DC%2BC3MXlvFKks7Y%3D&md5=a0b639bf2bcc47b731ea80790a93b98bCAS | open url image1

[31]  Q. Zhang, M. R. Alfarra, D. R. Worsnop, J. D. Allan, H. Coe, M. R. Canagaratna, J. L. Jimenez, Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environ. Sci. Technol. 2005, 39, 4938.
Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry.CrossRef | 1:CAS:528:DC%2BD2MXksVOqt7g%3D&md5=802c1b1a382847abbd4392ee16ba0982CAS | open url image1

[32]  F. W. McLafferty, F. Turecek, Interpretation of Mass Spectra, 4th edn 1994 (University Science Books: Mill Valley, CA).

[33]  J. J. Schauer, M. J. Kleeman, G. R. Cass, B. R. Simoneit, Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ. Sci. Technol. 1999, 33, 1578.
Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks.CrossRef | 1:CAS:528:DyaK1MXit12htrs%3D&md5=bfec2e6906606ff94085e95f88353978CAS | open url image1

[34]  N. L. Ng, M. R. Canagaratna, J. L. Jimenez, P. S. Chhabra, J. H. Seinfeld, D. R. Worsnop, Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos. Chem. Phys. 2011, 11, 6465.
Changes in organic aerosol composition with aging inferred from aerosol mass spectra.CrossRef | 1:CAS:528:DC%2BC3MXht1yksL3E&md5=e546c0bb650831d3c69a1067ce41d3b7CAS | open url image1

[35]  A. M. Sage, E. A. Weitkamp, A. L. Robinson, N. M. Donahue, Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions. Atmos. Chem. Phys. Discuss. 2007, 7, 10065.
Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions.CrossRef | open url image1

[36]  M. A. Miracolo, A. A. Presto, A. T. Lambe, C. J. Hennigan, N. M. Donahue, J. H. Kroll, D. R. Worsnop, A. L. Robinson, Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass. Environ. Sci. Technol. 2010, 44, 1638.
Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass.CrossRef | 1:CAS:528:DC%2BC3cXhtlWlurY%3D&md5=d6e911d617b2f7371a0934bbf326a2e1CAS | open url image1

[37]  N. Fuchs, A. Sutugin, Highly Dispersed Aerosols 1970 (Butterworth-Heinemann: Newton, MA).

[38]  A. T. Lambe, M. A. Miracolo, C. J. Hennigan, A. L. Robinson, N. M. Donahue, Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals. Environ. Sci. Technol. 2009, 43, 8794.
Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals.CrossRef | 1:CAS:528:DC%2BD1MXhtlWisrfN&md5=39a85e278c50a6d077cf177583961c50CAS | open url image1

[39]  C. D. Cappa, D. L. Che, S. H. Kessler, J. H. Kroll, K. R. Wilson, Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. J. Geophys. Res.–Atmos, 2011, 116, D15204.
Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation.CrossRef | open url image1

[40]  P. F. DeCarlo, E. J. Dunlea, J. R. Kimmel, A. C. Aiken, D. Sueper, J. Crounse, P. O. Wennberg, L. Emmons, Y. Shinozuka, A. Clarke, J. Zhou, J. Tomlinson, D. R. Collins, D. Knapp, A. J. Weinheimer, D. D. Montzka, T. Campos, J. L. Jimenez, Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmos. Chem. Phys. 2008, 8, 4027.
Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign.CrossRef | 1:CAS:528:DC%2BD1cXhtFehsr7O&md5=9dd70a8b0d518212bfc49c878f8210a2CAS | open url image1

[41]  A. T. Lambe, T. B. Onasch, D. R. Croasdale, J. P. Wright, A. T. Martin, J. P. Franklin, P. Massoli, J. H. Kroll, M. R. Canagaratna, W. H. Brune, D. R. Worsnop, P. Davidovits, Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. Environ. Sci. Technol. 2012, 46, 5430.
Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors.CrossRef | 1:CAS:528:DC%2BC38XmtVGktLY%3D&md5=be2a3c19262fd41891c7192c002c4bfdCAS | open url image1

[42]  Q. Zhang, D. R. Worsnop, M. R. Canagaratna, J. L. Jimenez, Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmos. Chem. Phys. 2005, 5, 3289.
Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols.CrossRef | 1:CAS:528:DC%2BD28XntVWqtw%3D%3D&md5=dd31c15fa427449b4c9f5cc53c997fccCAS | open url image1

[43]  A. C. Aiken, D. Salcedo, M. J. Cubison, J. A. Huffman, P. F. DeCarlo, I. M. Ulbrich, K. S. Docherty, D. Sueper, J. R. Kimmel, D. R. Worsnop, A. Trimborn, M. Northway, E. A. Stone, J. J. Schauer, R. M. Volkamer, E. Fortner, B. de Foy, J. Wang, A. Laskin, V. Shutthanandan, J. Zheng, R. Zhang, J. Gaffney, N. A. Marley, G. Paredes-Miranda, W. P. Arnott, L. T. Molina, G. Sosa, J. L. Jimenez, Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: fine particle composition and organic source apportionment. Atmos. Chem. Phys. 2009, 9, 6633.
Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: fine particle composition and organic source apportionment.CrossRef | 1:CAS:528:DC%2BD1MXhsFWisbrL&md5=e41a2e9c3d0da658b96ea9888960bdebCAS | open url image1

[44]  P. F. DeCarlo, I. M. Ulbrich, J. Crounse, B. de Foy, E. J. Dunlea, A. C. Aiken, D. Knapp, A. J. Weinheimer, T. Campos, P. O. Wennberg, J. L. Jimenez, Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO. Atmos. Chem. Phys. 2010, 10, 5257.
Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO.CrossRef | 1:CAS:528:DC%2BC3cXhtVCjsb7J&md5=f37bac928d2dc43cab2c11cffcc3884eCAS | open url image1

[45]  C. Mohr, J. A. Huffman, M. J. Cubison, A. C. Aiken, K. S. Docherty, J. R. Kimmel, I. M. Ulbricht, M. Hannigan, J. L. Jimenez, Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations. Environ. Sci. Technol. 2009, 43, 2443.
Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.CrossRef | 1:CAS:528:DC%2BD1MXis1Gltr8%3D&md5=34fcd7c30f97c5edcd197ace59c043adCAS | open url image1

[46]  J. A. de Gouw, A. M. Middlebrook, C. Warneke, R. Ahmadov, E. L. Atlas, R. Bahreini, D. R. Blake, C. A. Brock, J. Brioude, D. W. Fahey, F. C. Fehsenfeld, J. S. Holloway, M. Le Henaff, R. A. Lueb, S. A. McKeen, J. F. Meagher, D. M. Murphy, C. Paris, D. D. Parrish, A. E. Perring, I. B. Pollack, A. R. Ravishankara, A. L. Robinson, T. B. Ryerson, J. P. Schwarz, J. R. Spackman, A. Srinivasan, L. A. Watts, Organic aerosol formation downwind from the Deepwater Horizon oil spill. Science 2011, 331, 1295.
Organic aerosol formation downwind from the Deepwater Horizon oil spill.CrossRef | 1:CAS:528:DC%2BC3MXivVWks7Y%3D&md5=8b6a0b8f7ccbf0bcf64dc427dc33672aCAS | open url image1



Rent Article Export Citation Cited By (11)