Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

SO2 oxidation and nucleation studies at near-atmospheric conditions in outdoor smog chamber

Yang Zhou A B C , Elias P. Rosen B E G , Haofei Zhang B F , Weruka Rattanavaraha B , Wenxing Wang A D and Richard M. Kamens B
+ Author Affiliations
- Author Affiliations

A Environment Research Institute, Shandong University, Jinan, 250100, China.

B Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.

C Division of Environment, The Hong Kong University of Science &Technology, Clear Water Bay, Kowloon, Hong Kong, China.

D Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

E Present address: Southwest Sciences, Inc., 1570 Pacheco Street, Suite E-11 Santa Fe, NM 87505, USA.

F Present address: Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

G Corresponding author. Email: elirosen@gmail.com

Environmental Chemistry 10(3) 210-220 https://doi.org/10.1071/EN13024
Submitted: 31 January 2013  Accepted: 14 May 2013   Published: 28 June 2013

Environmental context. Nucleation, a fundamental step in atmospheric new-particle formation, is a significant source of atmospheric aerosols. Most laboratory experiments investigate H2SO4 nucleation based on indoor chambers or flow tube reactors, and find discrepancies with field observations. Here a large outdoor smog chamber is used to study the relationship between SO2 and nucleation rates, and demonstrate the importance of aqueous phase oxidation of SO2 by H2O2 and other oxidants.

Abstract. Particle formation under different initial ambient background conditions was simulated in a dual outdoor smog chamber for the SO2 and O3–SO2 systems with and without sunlight, as well as a propylene–NOx–SO2–sunlight system. An exponential power of 1.37 between nucleation rates at 1 nm (J1) and SO2 gas phase concentrations was obtained for the SO2–sunlight system and a minimum of 0.45 ppb SO2 is required by this relationship to initiate nucleation (J1 is equal to 1 cm–3 s–1). An investigation of the O3–SO2–sunlight/dark system showed that the presence of O3 contributed to the particle nucleation and growth at night; however, it only enhanced the particle growth in the daytime when H2SO4 photochemistry was present. In the presence of an OH scavenger, the O3–SO2 system did not show particle nucleation, suggesting that the scavenger cut off this pathway of SO2 oxidation. A lower nucleation rate and higher particle grow rate were also observed for SO2 oxidation in the presence of propylene and NOx. However a higher SO2 decay rate was obtained for the propylene system especially under high relative humidity, which was not observed in the O3–SO2 system. This suggests that aqueous phase oxidation of SO2 from H2O2, RO2 and other oxidants produced in the propylene–NOx system contribute to the particle growth.


References

[1]  S. C. Pryor, R. J. Barthelmie, REVEAL II: seasonality and spatial variability of particle and visibility conditions in the Fraser Valley. Sci. Total Environ. 2000, 257, 95.
REVEAL II: seasonality and spatial variability of particle and visibility conditions in the Fraser Valley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVyis7g%3D&md5=bdd0e7ac8bbeeb807f64cfddceda6180CAS | 10989920PubMed |

[2]  G. Oberdörster, Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 2001, 74, 1.
Pulmonary effects of inhaled ultrafine particles.Crossref | GoogleScholarGoogle Scholar | 11196075PubMed |

[3]  S. Schwartz, The Whitehouse Effect – shortwave radiative forcing of climate by anthropogenic aerosols: an overview. J. Aerosol Sci. 1996, 27, 359.
The Whitehouse Effect – shortwave radiative forcing of climate by anthropogenic aerosols: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVCqur8%3D&md5=9d527c8b71aecd091e7af6f1abcfcb64CAS |

[4]  S. Twomey, Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251.
Pollution and the planetary albedo.Crossref | GoogleScholarGoogle Scholar |

[5]  B. Albrecht, Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227.
Aerosols, cloud microphysics, and fractional cloudiness.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvit1yrsA%3D%3D&md5=a57367ed45af0aceae54bd36060a733bCAS | 17747885PubMed |

[6]  M. Sipila, T. Berndt, T. Petaja, D. Brus, J. Vanhanen, F. Stratmann, J. Patokoski, R. L. Mauldin, A. P. Hyvarinen, H. Lihavainen, M. Kulmala, The role of sulfuric acid in atmospheric nucleation. Science 2010, 327, 1243.
The role of sulfuric acid in atmospheric nucleation.Crossref | GoogleScholarGoogle Scholar | 20203046PubMed |

[7]  M. Kulmala, A. Laaksonen, L. Pirjola, Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res. – Atmos. 1998, 103, 8301.
Parameterizations for sulfuric acid/water nucleation rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVehtL8%3D&md5=f2e18f0c0c18e54c087e0f9c08100e65CAS |

[8]  P. Korhonen, M. Kulmala, A. Laaksonen, Y. Viisanen, R. McGraw, J. H. Seinfeld, Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere. J. Geophys. Res. – Atmos. 1999, 104, 26349.
Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFWqurk%3D&md5=82e0ac9c304bbbb37fef4dffae8311beCAS |

[9]  E. R. Lovejoy, J. Curtius, K. D. Froyd, Atmospheric ion-induced nucleation of sulfuric acid and water. J. Geophys. Res. – Atmos. 2004, 109, D08204.
Atmospheric ion-induced nucleation of sulfuric acid and water.Crossref | GoogleScholarGoogle Scholar |

[10]  R. Y. Zhang, I. Suh, J. Zhao, D. Zhang, E. C. Fortner, X. X. Tie, L. T. Molina, M. J. Molina, Atmospheric new particle formation enhanced by organic acids. Science 2004, 304, 1487.
Atmospheric new particle formation enhanced by organic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVGmsb8%3D&md5=f6e217ec06d964f710b329e0616558dbCAS |

[11]  M. Kulmala, K. Lehtinen, A. Laaksonen, Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration. Atmos. Chem. Phys. 2006, 6, 787.
Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jtLc%3D&md5=078487d22fe6d3a2a96fe47722f7218eCAS |

[12]  R. Zhang, A. Khalizov, L. Wang, M. Hu, W. Xu, Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 2012, 112, 1957.
Nucleation and growth of nanoparticles in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2itrnN&md5=16c3c017cd3aa3beec7cf94b7fcaa176CAS | 22044487PubMed |

[13]  S. Ball, D. Hanson, F. Eisele, P. McMurry, Laboratory studies of particle nucleation: initial results for H2SO4, H2O, and NH3 vapors. J. Geophys. Res. 1999, 104, 23709.
Laboratory studies of particle nucleation: initial results for H2SO4, H2O, and NH3 vapors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntleht7Y%3D&md5=16799e863f63869aa89b071565b1a916CAS |

[14]  B. Wyslouzil, J. Seinfeld, R. Flagan, K. Okuyama, Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water. J. Chem. Phys. 1991, 94, 6842.
Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFKnsbk%3D&md5=830b19805035fca40ee7767620425707CAS |

[15]  Y. Viisanen, M. Kulmala, A. Laaksonen, Experiments on gas–liquid nucleation of sulfuric acid and water. J. Chem. Phys. 1997, 107, 920.
Experiments on gas–liquid nucleation of sulfuric acid and water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1alt78%3D&md5=2be5c3276720832be78275fb6cbd5a24CAS |

[16]  L. H. Young, D. R. Benson, F. R. Kameel, J. R. Pierce, H. Junninen, M. Kulmala, S. H. Lee, Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results. Atmos. Chem. Phys. 2008, 8, 4997.
Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnurvN&md5=3c9f4a0245f2f3b2de37dbe607b7dbdaCAS |

[17]  T. Berndt, F. Stratmann, M. Sipilä, J. Vanhanen, T. Petäjä, J. Mikkilä, A. Grüner, G. Spindler, R. Lee Mauldin, J. Curtius, Laboratory study on new particle formation from the reaction OH+ SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process. Atmos. Chem. Phys. 2010, 10, 7101.
Laboratory study on new particle formation from the reaction OH+ SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSkt7rK&md5=172289d7b03c4240ffc89bd3d6a41f36CAS |

[18]  D. Brus, K. Neitola, A. Hyvärinen, T. Petäjä, J. Vanhanen, M. Sipilä, P. Paasonen, M. Kulmala, H. Lihavainen, Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions. Atmos. Chem. Phys. 2011, 11, 5277.
Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WjtrzL&md5=5f8cd74899793034fd66a23f5f821220CAS |

[19]  A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. H. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 6646.
Evidence for the role of organics in aerosol particle formation under atmospheric conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsLs%3D&md5=d5b2b23577b9b795f90a45b44e472026CAS | 20133603PubMed |

[20]  Miller  D. F., Precursor effects on SO2 oxidation Proceedings of the International Symposium 1978 , 12 (1–3 ), 273.

[21]  P. McMurry, S. Friedlander, New particle formation in the presence of an aerosol. Atmos. Environ. 1979, 13, 1635.
New particle formation in the presence of an aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVWgs7o%3D&md5=7127cd561be8c470861ca704b22c5763CAS |

[22]  S.-C. Wang, S. E. Paulson, D. Grosjean, R. C. Flagan, J. H. Seinfeld, Aerosol formation and growth in atmospheric organic/NOx systems – I. Outdoor smog chamber studies of C7- and C8-hydrocarbons. Atmos. Environ., A Gen. Topics 1992, 26, 403.
Aerosol formation and growth in atmospheric organic/NOx systems – I. Outdoor smog chamber studies of C7- and C8-hydrocarbons.Crossref | GoogleScholarGoogle Scholar |

[23]  R. Flagan, S. Wang, F. Yin, J. Seinfeld, G. Reischl, W. Winklmayr, R. Karch, Electrical mobility measurements of fine-particle formation during chamber studies of atmospheric photochemical reactions. Environ. Sci. Technol. 1991, 25, 883.
Electrical mobility measurements of fine-particle formation during chamber studies of atmospheric photochemical reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFeiu7Y%3D&md5=44519ada25862244eefc5d77c1593985CAS |

[24]  E. O. Edney, T. E. Kleindienst, M. Jaoui, M. Lewandowski, J. H. Offenberg, W. Wang, M. Claeys, Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos. Environ. 2005, 39, 5281.
Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVWmur8%3D&md5=e0b56fc32b571d332570e45d8b2402c8CAS |

[25]  K. Sellegri, M. Hanke, B. Umann, F. Arnold, M. Kulmala, Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST. Atmos. Chem. Phys. 2005, 5, 373.
Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrsLo%3D&md5=6cf7b35ed4e518c8edf8b74cdfca6b84CAS |

[26]  A. Laaksonen, M. Kulmala, C. O’Dowd, J. Joutsensaari, P. Vaattovaara, S. Mikkonen, K. Lehtinen, L. Sogacheva, M. Dal Maso, P. Aalto, The role of VOC oxidation products in continental new particle formation. Atmos. Chem. Phys. 2008, 8, 2657.
The role of VOC oxidation products in continental new particle formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKktL4%3D&md5=f709805db910703de3dfe34febdad021CAS |

[27]  T. Berndt, O. Boge, F. Stratmann, Formation of atmospheric H2SO4/H2O particles in the absence of organics: a laboratory study. Geophys. Res. Lett. 2006, 33, L15817.
Formation of atmospheric H2SO4/H2O particles in the absence of organics: a laboratory study.Crossref | GoogleScholarGoogle Scholar |

[28]  D. R. Benson, L. H. Young, F. R. Kameel, S. H. Lee, Laboratory-measured nucleation rates of sulfuric acid and water binary homogeneous nucleation from the SO2+OH reaction. Geophys. Res. Lett. 2008, 35, L11801.
Laboratory-measured nucleation rates of sulfuric acid and water binary homogeneous nucleation from the SO2+OH reaction.Crossref | GoogleScholarGoogle Scholar |

[29]  T. Berndt, F. Stratmann, S. Brasel, J. Heintzenberg, A. Laaksonen, M. Kulmala, SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 1: laboratory investigations. Atmos. Chem. Phys. 2008, 8, 6365.
SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 1: laboratory investigations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvV2k&md5=ce1264858aa25cb4a6bf756ce6a81293CAS |

[30]  T. Berndt, O. Boge, F. Stratmann, J. Heintzenberg, M. Kulmala, Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 2005, 307, 698.
Rapid formation of sulfuric acid particles at near-atmospheric conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1WrtA%3D%3D&md5=2a95d8ff4d023c6d730b1eef03c7f5ddCAS | 15692045PubMed |

[31]  M. Jang, R. M. Kamens, Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environ. Sci. Technol. 2001, 35, 3626.
Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFynurw%3D&md5=b4dc3f829d8470f78be9fb3bcb131989CAS | 11783638PubMed |

[32]  D. Hu, M. Tolocka, Q. Li, R. M. Kamens, A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmos. Environ. 2007, 41, 6478.
A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsl2jtr8%3D&md5=370737349981ac802faddbd115d3bd18CAS |

[33]  R. M. Kamens, H. Zhang, E. M. Chen, Y. Zhou, H. M. Parikh, R. Wilson, K. Galloway, E. P. Rosen, Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects. Atmos. Environ. 2011, 45, 2324.[Published online ahead of print 23 November 2010].
Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWktbs%3D&md5=70dcfaa60ebb5bdf1b9cec81061bbb5dCAS |

[34]  D. Hu, R. M. Kamens, Evaluation of the UNC toluene-SOA mechanism with respect to other chamber studies and key model parameters. Atmos. Environ. 2007, 41, 6465.
Evaluation of the UNC toluene-SOA mechanism with respect to other chamber studies and key model parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsl2jtr4%3D&md5=58edf877ca5ac98d54ff836dab0a5498CAS |

[35]  Q. Li, D. Hu, S. Leungsakul, R. M. Kamens, Large outdoor chamber experiments and computer simulations: (I) Secondary organic aerosol formation from the oxidation of a mixture of d-limonene and α-pinene. Atmos. Environ. 2007, 41, 9341.
Large outdoor chamber experiments and computer simulations: (I) Secondary organic aerosol formation from the oxidation of a mixture of d-limonene and α-pinene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOisrvK&md5=2edb4e949e35dd5cb814398406f60f34CAS |

[36]  H. Vuollekoski, S. Sihto, V. Kerminen, M. Kulmala, K. Lehtinen, A numerical comparison of different methods for determining the particle formation rate. Atmos. Chem. Phys. 2012, 12, 2289.
A numerical comparison of different methods for determining the particle formation rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12isbk%3D&md5=cd16ac48c20ac729489e334ad6901eadCAS |

[37]  S. L. Sihto, M. Kulmala, V. M. Kerminen, M. Dal Maso, T. Petaja, I. Riipinen, H. Korhonen, F. Arnold, R. Janson, M. Boy, A. Laaksonen, K. E. J. Lehtinen, Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmos. Chem. Phys. 2006, 6, 4079.
Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKlsbg%3D&md5=46c3b0872038b10d7c8609e988735fe2CAS |

[38]  M. Kulmala, M. Dal Maso, J. M. Makela, L. Pirjola, M. Vakeva, P. Aalto, P. Miikkulainen, K. Hameri, C. D. O’Dowd, On the formation, growth and composition of nucleation mode particles. Tellus B Chem. Phys. Meterol. 2001, 53, 479.
On the formation, growth and composition of nucleation mode particles.Crossref | GoogleScholarGoogle Scholar |

[39]  V. M. Kerminen, M. Kulmala, Analytical formulae connecting the ‘real’ and the ‘apparent’ nucleation rate and the nuclei number concentration for atmospheric nucleation events. J. Aerosol Sci. 2002, 33, 609.
Analytical formulae connecting the ‘real’ and the ‘apparent’ nucleation rate and the nuclei number concentration for atmospheric nucleation events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1Onurs%3D&md5=07f261d0faedd33504c56a1d5f662c44CAS |

[40]  M. Kulmala, H. Vehkamaki, T. Petaja, M. Dal Maso, A. Lauri, V. M. Kerminen, W. Birmili, P. H. McMurry, Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 2004, 35, 143.
Formation and growth rates of ultrafine atmospheric particles: a review of observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKhug%3D%3D&md5=db1adf4298bf288478a53ce349f7c0fbCAS |

[41]  S. Mikkonen, S. Romakkaniemi, J. Smith, H. Korhonen, T. Petäjä, C. Plass-Duelmer, M. Boy, P. McMurry, K. Lehtinen, J. Joutsensaari, A statistical proxy for sulphuric acid concentration. Atmos. Chem. Phys. 2011, 11, 11319.
A statistical proxy for sulphuric acid concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisbs%3D&md5=4f623fbbab1ef4e24fa77dc1b4f725e1CAS |

[42]  H. Sievering, J. Cainey, M. Harvey, J. McGregor, S. Nichol, P. Quinn, Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. J. Geophys. Res. – Atmos. 2004, 109, D19317.
Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation.Crossref | GoogleScholarGoogle Scholar |

[43]  H. Sievering, B. Lerner, J. Slavich, J. Anderson, M. Posfai, J. Cainey, O3 oxidation of SO2 in sea-salt aerosol water: size distribution of non-sea-salt sulfate during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 1999, 104, 21707.
O3 oxidation of SO2 in sea-salt aerosol water: size distribution of non-sea-salt sulfate during the First Aerosol Characterization Experiment (ACE 1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFOnsL8%3D&md5=3d107fe100f99d1b1abd961f23535000CAS |

[44]  W. Hoppel, L. Pasternack, P. Caffrey, G. Frick, J. Fitzgerald, D. Hegg, S. Gao, J. Ambrusko, T. Albrechcinski, Sulfur dioxide uptake and oxidation in sea-salt aerosol. J. Geophys. Res. 2001, 106, 27575.
Sulfur dioxide uptake and oxidation in sea-salt aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1ejsb8%3D&md5=0c5ed9e074b371af9dbfde22681f68caCAS |

[45]  W. A. Hoppel, P. F. Caffrey, Oxidation of SIV in sea-salt aerosol at high pH: ozone versus aerobic reaction. J. Geophys. Res. – Atmos. 2005, 110, D23202.
Oxidation of SIV in sea-salt aerosol at high pH: ozone versus aerobic reaction.Crossref | GoogleScholarGoogle Scholar |

[46]  A. Goodman, P. Li, C. Usher, V. Grassian, Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles. J. Phys. Chem. A 2001, 105, 6109.
Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVClsrg%3D&md5=00624fcf72a85b85dd9d26b2798fb4a9CAS |

[47]  M. Ullerstam, R. Vogt, S. Langer, E. Ljungström, The kinetics and mechanism of SO2 oxidation by O3 on mineral dust. Phys. Chem. Chem. Phys. 2002, 4, 4694.
The kinetics and mechanism of SO2 oxidation by O3 on mineral dust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1aitrk%3D&md5=5d4eb8c28ae47313baad77ae1a6a3fdcCAS |

[48]  S. M. Aschmann, R. Atkinson, Formation yields of methyl vinyl ketone and methacrolein from the gas-phase reaction of O3 with isoprene. Environ. Sci. Technol. 1994, 28, 1539.
Formation yields of methyl vinyl ketone and methacrolein from the gas-phase reaction of O3 with isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1CgtLs%3D&md5=7d631c5050c0a62144103e39bc55284eCAS | 22165941PubMed |

[49]  A. Wiedensohler, H. C. Hansson, D. Orsini, M. Wendisch, F. Wagner, K. Bower, T. Chourlarton, M. Wells, M. Parkin, K. Acker, Night-time formation and occurrence of new particles associated with orographic clouds. Atmos. Environ. 1997, 31, 2545.
Night-time formation and occurrence of new particles associated with orographic clouds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslymsrk%3D&md5=451e08d58fcfb84e920f787a262e29dcCAS |

[50]  S. Mertes, D. Galgon, K. Schwirn, A. Nowak, K. Lehmann, A. Massling, A. Wiedensohler, W. Wieprecht, Evolution of particle concentration and size distribution observed upwind, inside and downwind hill cap clouds at connected flow conditions during FEBUKO. Atmos. Environ. 2005, 39, 4233.
Evolution of particle concentration and size distribution observed upwind, inside and downwind hill cap clouds at connected flow conditions during FEBUKO.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlKrtrg%3D&md5=b1276ce73ca030d91ed69259f3c92b64CAS |

[51]  A. Kiendler-Scharr, J. Wildt, M. Dal Maso, T. Hohaus, E. Kleist, T. F. Mentel, R. Tillmann, R. Uerlings, U. Schurr, A. Wahner, New particle formation in forests inhibited by isoprene emissions. Nature 2009, 461, 381.
New particle formation in forests inhibited by isoprene emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFelsbbE&md5=661925b9a864680bfad9958a9835059eCAS | 19759617PubMed |

[52]  J. D. Surratt, Y. Gomez-Gonzalez, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E. O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8345.
Organosulfate formation in biogenic secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOgsrw%3D&md5=fb22ddfb57cd565e066e50ea76a5860cCAS | 18710205PubMed |

[53]  J. Seinfeld, S. Pandis, From air pollution to climate change, in Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 2006, pp. 301–318 (Wiley, New York).