Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Deposition and dissolution of metal sulfide layers at the Hg electrode surface in seawater electrolyte conditions

Ivana Milanović A , Damir Krznarić A , Elvira Bura-Nakić A and Irena Ciglenečki A B
+ Author Affiliations
- Author Affiliations

A Divison for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia.

B Corresponding author. Email:irena@irb.hr

Environmental Chemistry 11(2) 167-172 https://doi.org/10.1071/EN13056
Submitted: 14 March 2013  Accepted: 29 May 2013   Published: 20 September 2013

Environmental context. The electrochemical detection of many sulfur compounds in natural waters is based on the deposition of a HgS layer at the Hg electrode. In samples containing metal ions in excess of sulfide species, electrochemical exchange reactions between the HgS and the metal ion produce metal-sulfide voltammetric peaks. These peaks can easily be misinterpreted as dissolved sulfide species, and hence do not reflect the bulk state of the solution.

Abstract. Cyclic voltammetry on a Hg electrode was used to investigate the influence of metal ion (Zn, Cd, Cu, Fe, Pb, Co) on HgS deposition–dissolution in seawater conditions. Due to the exchange of electrons between Hg2+ from a HgS layer and free metal (M2+) from the solution (HgSlayer + M2+ + 2e ↔ MSlayer + Hg0), the Hg electrode becomes the site for surface metal sulfide (MS) formation. The exchange reaction is reversible, and the surface-formed MS layer reduces at a more negative potential than HgS (MSlayer + 2e + H+ → M0 + HS). The potentials of both electrode reactions, and the formation and reduction of the MS layer, are determined by the MS solubility product. In solutions containing excess of the free metal ions in comparison to the free sulfide, the exchange reaction produces MS voltammetric peaks, which can be misrepresented for the dissolved sulfide species. This research indirectly confirmed that the FeS electrochemical signal, usually recorded in an iron- and sulfide-rich environment at ~–1.1 V v. Ag/AgCl, is not due to FeS reduction. The connection between the studied MS reduction peak potentials and the solubility products shows that the FeS layer formed by an electrochemical exchange reaction with HgS should be reduced at the Hg surface ~100 mV more negative than free Fe2+.


References

[1]  N. Batina, I. Ciglenečki, B. Ćosović, Determination of elemental sulfur, sulfide, and their mixtures in electrolyte solutions by a.c. voltammetry. Anal. Chim. Acta 1992, 267, 157.
Determination of elemental sulfur, sulfide, and their mixtures in electrolyte solutions by a.c. voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFyjtLY%3D&md5=003f12ec28de26d5b4cf2f3c7eb3fa3cCAS |

[2]  I. Ciglenečki, B. Ćosović, Electrochemical determination of thiosulfate in seawater in the presence of elemental sulfur and sulfide. Electroanalysis 1997, 9, 775.
Electrochemical determination of thiosulfate in seawater in the presence of elemental sulfur and sulfide.Crossref | GoogleScholarGoogle Scholar |

[3]  D. Krznarić, I. Ciglenečki, Electrochemical processes of sulfide in NaCl electrolyte solutions on mercury electrode. Electroanalysis 2005, 17, 1317.
Electrochemical processes of sulfide in NaCl electrolyte solutions on mercury electrode.Crossref | GoogleScholarGoogle Scholar |

[4]  E. Bura-Nakić, D. Krznarić, G. R. Helz, I. Ciglenečki, Characterization of iron sulfide species in model solutions by cyclic voltammetry. Revisiting an old problem. Electroanalysis 2011, 23, 1376.
Characterization of iron sulfide species in model solutions by cyclic voltammetry. Revisiting an old problem.Crossref | GoogleScholarGoogle Scholar |

[5]  I. Ciglenečki, E. Bura-Nakić, M. Marguš, Zinc sulfide surface formation on Hg electrode during cyclic voltammmetric scan: an implication for previous and future research studies on metal sulfide systems. J. Solid State Electrochem. 2012, 16, 2041.
Zinc sulfide surface formation on Hg electrode during cyclic voltammmetric scan: an implication for previous and future research studies on metal sulfide systems.Crossref | GoogleScholarGoogle Scholar |

[6]  N. Spătaru, F. G. Bănică, Catalytic hydrogen evolution in cathodic stripping voltammetry on a mercury electrode in the presence of cobalt(II) ion and phenylthiourea or thiourea. Analyst (Lond.) 2001, 126, 1907.
Catalytic hydrogen evolution in cathodic stripping voltammetry on a mercury electrode in the presence of cobalt(II) ion and phenylthiourea or thiourea.Crossref | GoogleScholarGoogle Scholar |

[7]  D. Krznarić, I. Ciglenečki, B. Ćosović, Voltammetric investigations of 2-dimethylarsinylethanol sulfide in NaCl and seawater. Anal. Chim. Acta 2001, 431, 269.
Voltammetric investigations of 2-dimethylarsinylethanol sulfide in NaCl and seawater.Crossref | GoogleScholarGoogle Scholar |

[8]  F. G. Bănica, M. Galik, I. Svancara, K. Vytras, Electrochemical investigation of metal sulfides at mercury electrodes using thiourea as a source of sulfide ion. Electroanalysis 2009, 21, 332.
Electrochemical investigation of metal sulfides at mercury electrodes using thiourea as a source of sulfide ion.Crossref | GoogleScholarGoogle Scholar |

[9]  R. Al-Farawati, C. M. G. van der Berg, Thiols in coastal waters of the North Sea and English Channel. Environ. Sci. Technol. 2001, 35, 1902.
Thiols in coastal waters of the North Sea and English Channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Slsbc%3D&md5=3d7569733f1025901db6926b22148bffCAS | 11393967PubMed |

[10]  I. Ciglenečki, G. R. Helz, Voltammetric behavior of MoS42– and SbS43–, possible components of “dissolved sulfide” in oxic natural waters. Electroanalysis 2003, 15, 145.
Voltammetric behavior of MoS42– and SbS43–, possible components of “dissolved sulfide” in oxic natural waters.Crossref | GoogleScholarGoogle Scholar |

[11]  I. Ciglenečki, D. Krznarić, G. R. Helz, Voltammetry of copper sulfide particles and nanoparticles; investigation of the cluster hypothesis. Environ. Sci. Technol. 2005, 39, 7492.
Voltammetry of copper sulfide particles and nanoparticles; investigation of the cluster hypothesis.Crossref | GoogleScholarGoogle Scholar | 16245820PubMed |

[12]  E. Bura-Nakić, D. Krznarić, D. Jurašin, G. R. Helz, I. Ciglenečki, Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters. Anal. Chim. Acta 2007, 594, 44.
Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters.Crossref | GoogleScholarGoogle Scholar | 17560384PubMed |

[13]  G. W. Luther, A. E. Giblin, R. Varsolona, Polarographic analysis of sulfur species in marine porewaters. Limnol. Oceanogr. 1985, 30, 727.
Polarographic analysis of sulfur species in marine porewaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXls1Gkuro%3D&md5=5ece5d88ec07c63012bb2ac8dd100758CAS |

[14]  I. Ciglenečki, Z. Kodba, B. Ćosović, Sulfur species in Rogoznica Lake. Mar. Chem. 1996, 53, 101.
Sulfur species in Rogoznica Lake.Crossref | GoogleScholarGoogle Scholar |

[15]  E. Bura-Nakić, E. Viollier, D. Jezequel, I. Ciglenečki, Reduced sulfur species in anoxic water column of meromictic Pavin crater lake (Central Massif, France). Chem. Geol. 2009a, 266, 311.
Reduced sulfur species in anoxic water column of meromictic Pavin crater lake (Central Massif, France).Crossref | GoogleScholarGoogle Scholar |

[16]  E. Bura-Nakić, G. R. Helz, I. Ciglenečki, B. Ćosović, Reduced sulfur species in a stratified seawater lake (Rogonica Lake, Croatia); seasonal variations and argument for organic carriers of reactive sulfur. Geochim. Cosmochim. Acta 2009b, 73, 3738.
Reduced sulfur species in a stratified seawater lake (Rogonica Lake, Croatia); seasonal variations and argument for organic carriers of reactive sulfur.Crossref | GoogleScholarGoogle Scholar |

[17]  J. S. Redinha, C. Politeiro, J. L. C. Pereira, Determination of sulfide by square-wave polarography. Anal. Chim. Acta 1997, 351, 115.
Determination of sulfide by square-wave polarography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFKitLg%3D&md5=7ecdef591372a610317b3c41a33e0161CAS |

[18]  D. Krznarić, G. R. Helz, I. Ciglenečki, Prospect of determining copper sulfide nanoparticles by voltammetry: a potential artifact in supersaturated solutions. J. Electroanal. Chem. 2006, 590, 207.
Prospect of determining copper sulfide nanoparticles by voltammetry: a potential artifact in supersaturated solutions.Crossref | GoogleScholarGoogle Scholar |

[19]  D. Krznarić, G. R. Helz, E. Bura-Nakić, D. Jurašin, Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example. Anal. Chem. 2008, 80, 742.
Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example.Crossref | GoogleScholarGoogle Scholar | 18183961PubMed |

[20]  J. Buffle, R. R. De Vitre, D. Perret, G. G. Leppard, Combining field measurements for speciation in non perturbable waters, in Metal Speciation: Theory, Analysis, and Application (Eds J. R. Kramer, H. E. Allen), 1988, pp. 99–124 (Lewis Publishers Inc.: Chelsea, MI).

[21]  S. M. Theberge, G. W. Luther, Determination of the electrochemical properties of a soluble aqueous FeS species present in sulfidic solutions. Aquat. Geochem. 1997, 3, 191.
Determination of the electrochemical properties of a soluble aqueous FeS species present in sulfidic solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Kju7c%3D&md5=4dc988e185141cf2b0c535dcf48f1200CAS |

[22]  W. Davison, J. Buffle, R. DeVitre, Direct polarographic determination of O2, FeII, MnII, S–II and related species in anoxic waters. Pure Appl. Chem. 1988, 60, 1535.
Direct polarographic determination of O2, FeII, MnII, S–II and related species in anoxic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFGms74%3D&md5=cb68312eb58214074e6da8ebd2cbaa98CAS |

[23]  W. Davison, J. Buffle, R. DeVitre, Voltammetric characteization of a dissolved iron sulfide species by laboratory and field studies. Anal. Chim. Acta 1998, 377, 193.
Voltammetric characteization of a dissolved iron sulfide species by laboratory and field studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1Kmurg%3D&md5=f1f1b17afbb91944aa6b5da8e2f3d159CAS |

[24]  G. W. Luther, B. Glazer, S. Ma, R. Trouwborst, B. R. Schultz, G. K. Druschel, C. Kraiya, Iron and sulfur chemistry in a stratified lake: evidence for iron-rich sulfide complexes. Aquat. Geochem. 2003, 9, 87.
Iron and sulfur chemistry in a stratified lake: evidence for iron-rich sulfide complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvF2lsrY%3D&md5=f730b4d985a331ebb60d2af8fec1e18cCAS |

[25]  R. R. de Vitre, J. Buffle, D. Perret, R. Baudat, A study of iron and manganese transformations at the O2/S–II transition layer in a eutrophic lake (Lake Bret, Switzerland): a multimethod approach. Geochim. Cosmochim. Acta 1988, 52, 1601.
A study of iron and manganese transformations at the O2/S–II transition layer in a eutrophic lake (Lake Bret, Switzerland): a multimethod approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksl2htrw%3D&md5=bf96c87a098a8a5597bf56b762f2eaadCAS |

[26]  D. Rickard, A. Oldroyd, A. Cramp, Voltammetric evidence for soluble FeS complexes in anoxic estuarine muds. Estuaries 1999, 22, 693.
Voltammetric evidence for soluble FeS complexes in anoxic estuarine muds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlCks74%3D&md5=9f9665ac6146f28c45d5eb687d8e15dbCAS |

[27]  G. W. Luther, B. T. Glazer, S. Ma, R. E. Trouwborst, T. S. Moore, E. Metzger, C. Kraiya, T. J. Waite, G. Druschel, B. Sundby, M. Taillefert, D. B. Nuzzio, T. M. Shank, B. L. Lewis, P. J. Brendel, Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyser (ISEA). Mar. Chem. 2008, 108, 221.
Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyser (ISEA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvV2jsQ%3D%3D&md5=ad78424c805040cff7ea7f5e8c449287CAS |

[28]  E. Bura-Nakić, E. Viollier, I. Ciglenečki, Environ. Sci. Technol. 2013, 47, 741.
Crossref | GoogleScholarGoogle Scholar | 23240551PubMed |

[29]  G. R. Helz, I. Ciglenečki, D. Krznarić, E. Bura-Nakić, Voltammetry of sulfide nanoparticles and the FeS(aq) problem, in Aquatic Redox Chemistry (Eds P.G. Tratnyek, T. J. Grundl, S. B. Haderlein) 2011, pp. 265–282 (ACS: Washington, DC).

[30]  K. Winkler, T. Krogulec, The study of electrode processes of FeII–thiosulphate complexes on mercury electrodes. J. Electroanal. Chem. 1995, 386, 127.
The study of electrode processes of FeII–thiosulphate complexes on mercury electrodes.Crossref | GoogleScholarGoogle Scholar |

[31]  G. W. Luther, T. M. Church, D. Powell, Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep-Sea Res. 1991, 38, S1121.
Sulfur speciation and sulfide oxidation in the water column of the Black Sea.Crossref | GoogleScholarGoogle Scholar |

[32]  S. J. Chadwell, D. Rickard, G. W. Luther, Electrochemical evidence for metal polysulfide complexes: terasulfide (S42–) reactions with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+. Electroanalysis 2001, 13, 21.
Electrochemical evidence for metal polysulfide complexes: terasulfide (S42–) reactions with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpvFynsQ%3D%3D&md5=e4b6d34b2037e28b3a7b00485988ae8eCAS |

[33]  S. J. Chadwell, D. Rickard, G. W. Luther, Electrochemical evidence for pentasulfide complexes with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+. Aquat. Geochem. 1999, 5, 29.
Electrochemical evidence for pentasulfide complexes with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFynsbw%3D&md5=6935499df832390e8fbd5269c04ea542CAS |

[34]  K. M. Mullaugh, G. W. Luther, Voltammetric characterization of dissolved cadmium sulfide species. Electroanalysis 2011, 23, 2735.
Voltammetric characterization of dissolved cadmium sulfide species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyis73F&md5=3a027c35dd7f427857b2ce68533f0465CAS |

[35]  K. Winkler, T. Krogulec, Z. Galus, Formation of FeS and its effect on the FeII/Fe system in thiocyanate solution at mercury electrodes. Electrochim. Acta 1985, 30, 1055.
Formation of FeS and its effect on the FeII/Fe system in thiocyanate solution at mercury electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFaisLo%3D&md5=9cf73b1c1d5fb0d4031f859d8c655ef7CAS |

[36]  K. Winkler, S. Kalinowski, T. Krogulec, A study of the deposition of iron on mercury and glassy carbon electrodes. J. Electroanal. Chem. 1988, 252, 303.
A study of the deposition of iron on mercury and glassy carbon electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtl2ht74%3D&md5=d8b29401fc2aaf40beed5c12ede48f96CAS |

[37]  E. Itabashi, Influence of sulfide and cyanide ions on the electrochemical behavior of the FeII–Fe(Hg) system in thiocyanate solutions at mercury electrodes. J. Electroanal. Chem. 1981, 117, 295.
Influence of sulfide and cyanide ions on the electrochemical behavior of the FeII–Fe(Hg) system in thiocyanate solutions at mercury electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXpt1GrtQ%3D%3D&md5=ada55c65f6cca887a4d180f86a8cd590CAS |

[38]  J. H. Carney, H. A. Laitinen, Electrochemical study of exchange reactions of mercuric sulfide monolayers. Anal. Chem. 1970, 42, 473.
Electrochemical study of exchange reactions of mercuric sulfide monolayers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtFOisLY%3D&md5=8452413ffd6b1e08089743c0b98f30c7CAS |

[39]  S. Licht, Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides. J. Electrochem. Soc. 1988, 135, 2971.
Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXosVWnuw%3D%3D&md5=f27cde3b035df57c1fdfaea5917c3d35CAS |

[40]  J. A. Dean (Ed.), Lange’s Handbook of Chemistry, 12th edn 1979 (McGraw-Hill: New York).

[41]  B. L. Lewis, G. W. Luther, H. Lane, T. M. Church, Determination of metal-organic complexation in natural waters by SWASV with pseudopolarograms. Electroanalysis 1995, 7, 166.
Determination of metal-organic complexation in natural waters by SWASV with pseudopolarograms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltF2gtrg%3D&md5=f39551f7336ac46978c7d19a70fc8630CAS |

[42]  S. J. Chadwell, D. Rickard, G. W. Luther, Electrochemical evidence for pentasulfide complexes with Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+. Aquat. Geochem. 1999, 5, 29.
Electrochemical evidence for pentasulfide complexes with Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFynsbw%3D&md5=6935499df832390e8fbd5269c04ea542CAS |

[43]  L. Croot, J. W. Moffett, G. W. Luther, Polarographic determination of half-wave potentials for copper-organic complexes in seawater. Mar. Chem. 1999, 67, 219.
Polarographic determination of half-wave potentials for copper-organic complexes in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCqtbs%3D&md5=0daf57e65054dd3a615e1524ca8b49e2CAS |