Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Metal complexation by organic ligands (L) in near-pristine estuarine waters: evidence for the identity of L

Hollydawn Murray A B C , Guillaume Meunier A , Dagmar B. Stengel B and Rachel Cave A

A Earth and Ocean Science, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.

B Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.

C Corresponding author. Email: hollydawn.murray@gmail.com

Environmental Chemistry 11(2) 89-99 http://dx.doi.org/10.1071/EN13084
Submitted: 24 April 2013  Accepted: 18 October 2013   Published: 3 April 2014

Environmental context. Metal toxicity to marirne organisms is largely controlled by organic ligands (L) although the source, structure and stimuli of most ligands remain unknown. We studied trends in Cd and Zn complexing ligands in a near-pristine Irish estuary to gain clues on the identity of L in natural waters. The evidence suggests the naturally occurring Cd ligands include fulvic acids whereas the Zn ligands are likely to be exuded from seaweeds. Further research is required to determine their exact identity.

Abstract. Trace metal interactions with organic ligands largely control metal bioavailability in marine systems, although little is known about the identity of the ligands. To gain insight into the identity of metal complexing ligands (L), surface water and four species of brown seaweed were sampled from four sites in a region of the Lough Furnace Estuary, Ireland with varying salinity. We measured metal (Cd, Cu, Pb, Zn) speciation, complexing ligands, stability constants (log K′), glutathione (GSH), cysteine (Cys) and seaweed metal contents. Although prevalent in seaweed tissue, dissolved Cu and Pb concentrations in water were below the detection limits. Both Cd and Zn occurred in seaweed tissue. In water, both Cd and Zn occurred predominantly complexed to ligands. Levels of complexed Zn increased with decreasing salinity, increasing from 77 % at high salinity to 100 % at low salinity. Total dissolved Cd showed a mid-salinity decrease in complexation. The concentration of zinc ligands (LZn) ranged from 27.41 nM at high salinity to 95.81 nM at mid-salinity. Cd ligands (LCd) occurred in the highest concentration, 8.72 nM, at mid-salinity. Comparison of the log K′ values with known ligands provided evidence of their identity: similarities were identified for LCd and fulvic acid, and LZn and macroalgal exudates.


References

[1]  L. Laglera, C. M. G. van den Berg, Copper complexation by thiol compounds in estuarine waters. Mar. Chem. 2003, 82, 71.
Copper complexation by thiol compounds in estuarine waters.CrossRef | 1:CAS:528:DC%2BD3sXktF2rs7c%3D&md5=3f5b0117f5d078791307e297122ab748CAS | open url image1

[2]  W. Baeyens, L. Goeyens, F. Monteny, M. Elskens, Effect of organic complexation on the behaviour of dissolved Cd, Cu and Zn in the Scheldt estuary. Hydrobiologia 1997, 366, 81.
Effect of organic complexation on the behaviour of dissolved Cd, Cu and Zn in the Scheldt estuary.CrossRef | 1:CAS:528:DyaK1cXmt1ansr4%3D&md5=eda98dd2ec928eec97a9a8d76f6ad7d1CAS | open url image1

[3]  J. Zwolsman, B. Van Eck, Geochemistry of dissolved trace metals (cadmium, copper, zinc) in the Scheldt Estuary, southwestern Netherlands: impact of seasonal variability. Geochim. Cosmochim. Acta 1997, 61, 1635.
Geochemistry of dissolved trace metals (cadmium, copper, zinc) in the Scheldt Estuary, southwestern Netherlands: impact of seasonal variability.CrossRef | 1:CAS:528:DyaK2sXjtVSgs7w%3D&md5=18a4b66f2279ec83447680ddfc0f01acCAS | open url image1

[4]  H. Paucot, R. Wollast, Transport and transformation of trace metals in the Scheldt Estuary. Mar. Chem. 1997, 58, 229.
Transport and transformation of trace metals in the Scheldt Estuary.CrossRef | 1:CAS:528:DyaK2sXotFSmsL4%3D&md5=88407bc8752c09645fd2d987eddf7cbfCAS | open url image1

[5]  C. M. G. van den Berg, A. G. A. Merks, E. K. Duursma, Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt Estuary. Estuar. Coast. Shelf Sci. 1987, 24, 785.
Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt Estuary.CrossRef | 1:CAS:528:DyaL2sXls1Wjs7w%3D&md5=842cb16ffcd16d30f3f17d56bae1f112CAS | open url image1

[6]  J. Moffett, L. Brand, Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol. Oceanogr. 1996, 41, 388.
Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress.CrossRef | 1:CAS:528:DyaK28XkvFKhtrk%3D&md5=a5183f874c7a5d69994ac244bd4b2c46CAS | open url image1

[7]  L. Gerringa, T. Poortvliet, H. Hummel, Comparison of chemical speciation of copper in the Oosterschelde and Westerschelde estuaries, the Netherlands. Estuar. Coast. Shelf Sci. 1996, 42, 629.
Comparison of chemical speciation of copper in the Oosterschelde and Westerschelde estuaries, the Netherlands.CrossRef | 1:CAS:528:DyaK28Xjs1Cjtb0%3D&md5=1a6fd0706fd565bf9b4ec8dd530015c4CAS | open url image1

[8]  L. Gerringa, H. Hummel, T. Moerdijk-Poortvliet, Relations between free copper and salinity, dissolved and particulate organic carbon in the Oosterschelde and Westerschelde. Neth. J. Sea Res. 1998, 40, 193.
Relations between free copper and salinity, dissolved and particulate organic carbon in the Oosterschelde and Westerschelde.CrossRef | 1:CAS:528:DyaK1MXitVOjtw%3D%3D&md5=ed0e2c593ab2fa714fee603355d629c7CAS | open url image1

[9]  J. Santos-Echeandia, L. M. Laglera, R. Prego, C. M. G. van den Berg, Dissolved copper speciation behaviour during estuarine mixing in the San Simon Inlet (wet season, Galicia). Influence of particulate matter. Estuar. Coast. Shelf Sci. 2008, 76, 447.
Dissolved copper speciation behaviour during estuarine mixing in the San Simon Inlet (wet season, Galicia). Influence of particulate matter.CrossRef | open url image1

[10]  G. C. Shank, S. A. Skrabal, R. F. Whitehead, Fluxes of strong Cu-complexing ligands from sediments of an organic-rich estuary. Estuar. Coast. Shelf Sci. 2004, 60, 349.
Fluxes of strong Cu-complexing ligands from sediments of an organic-rich estuary.CrossRef | 1:CAS:528:DC%2BD2cXjvFSks70%3D&md5=bfb1abc1cd80ba873fa329e986697cefCAS | open url image1

[11]  D. Tang, K. Warnken, P. Santschi, Organic complexation of copper in surface waters of Galveston Bay. Limnol. Oceanogr. 2001, 46, 321.
Organic complexation of copper in surface waters of Galveston Bay.CrossRef | 1:CAS:528:DC%2BD3MXjtVWgsLY%3D&md5=df068ffa8c5f24c04482a5e026f0672aCAS | open url image1

[12]  C. M. G. van den Berg, A. De Luca Rebello, Organic-copper interactions in Guanabara Bay, Brazil. An electrochemical study of copper complexation by dissolved organic material in a tropical bay. Sci. Total Environ. 1986, 58, 37.
Organic-copper interactions in Guanabara Bay, Brazil. An electrochemical study of copper complexation by dissolved organic material in a tropical bay.CrossRef | 1:CAS:528:DyaL2sXnt1Cntw%3D%3D&md5=bf3cb78331d6a2bc448b7186a5c6a8ecCAS | open url image1

[13]  M. E. Bender, W. R. Matson, R. A. Jordan, Significance of metal complexing agents in secondary sewage effluents. Environ. Sci. Technol. 1970, 4, 520.
Significance of metal complexing agents in secondary sewage effluents.CrossRef | 1:CAS:528:DyaE3cXktFygsb4%3D&md5=faaa2082ec458090d61a72b33bba6861CAS | open url image1

[14]  S. Batchelli, F. L. L. Muller, K. C. Chang, C. L. Lee, Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters. Environ. Sci. Technol. 2010, 44, 8485.
Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters.CrossRef | 1:CAS:528:DC%2BC3cXhtlansL%2FK&md5=d29eef9b1f5fa2e785f743ada4f6445fCAS | 20964358PubMed | open url image1

[15]  P. L. Croot, J. W. Moffett, L. E. Brand, Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress. Limnol. Oceanogr. 2000, 45, 619.
Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress.CrossRef | 1:CAS:528:DC%2BD3cXjsV2ltb8%3D&md5=eab5e7edb480657d2b91fb5aab7d6e1dCAS | open url image1

[16]  S. Andrade, M. J. Pulido, J. A. Correa, The effect of organic ligands exuded by intertidal seaweeds on copper complexation. Chemosphere 2010, 78, 397.
The effect of organic ligands exuded by intertidal seaweeds on copper complexation.CrossRef | 1:CAS:528:DC%2BC3cXpsFCj&md5=009917458874a1965406fe2d0b695b26CAS | 19962173PubMed | open url image1

[17]  J. M. Vraspir, A. Butler, Chemistry of marine ligands and siderophores. Annu. Rev. Mar. Sci. 2009, 1, 43.
Chemistry of marine ligands and siderophores.CrossRef | open url image1

[18]  H. Murray, G. Meunier, C. M. G. van den Berg, R. Cave, D. B. Stengel, Voltammetric characterization of macroalgae-exuded organic ligands in response to Cu and Zn: a source and stimuli for L. Environ. Chem. 2013,
Voltammetric characterization of macroalgae-exuded organic ligands in response to Cu and Zn: a source and stimuli for L.CrossRef | open url image1

[19]  B. Ahner, S. Kong, F. Moreal, Phytochelatin production in marine algae. 1. An interspecies comparison. Limnol. Oceanogr. 1995, 40, 649.
Phytochelatin production in marine algae. 1. An interspecies comparison.CrossRef | 1:CAS:528:DyaK2MXos1GmsL8%3D&md5=825d89888a87af882b38379276e067daCAS | open url image1

[20]  J. Tang, K. H. Johannesson, Ligand extraction of rare earth elements from aquifer sediments: implications for rare earth element complexation with organic matter in natural waters. Geochim. Cosmochim. Acta 2010, 74, 6690.
Ligand extraction of rare earth elements from aquifer sediments: implications for rare earth element complexation with organic matter in natural waters.CrossRef | 1:CAS:528:DC%2BC3cXhtlGms7nE&md5=611f4b4a3521ef28395e779e62a0fbb9CAS | open url image1

[21]  C. B. Braungardt, E. P. Achterberg, M. Gledhill, M. Nimmo, F. Elbaz-Poulichet, A. Cruzado, Chemical speciation of dissolved Cu, Ni, and Co in a contaminated estuary in southwest Spain and its influence on plankton communities. Environ. Sci. Technol. 2007, 41, 4214.
Chemical speciation of dissolved Cu, Ni, and Co in a contaminated estuary in southwest Spain and its influence on plankton communities.CrossRef | 1:CAS:528:DC%2BD2sXlt1OgsLY%3D&md5=a6ea235bdabdf90044f2153a462e1ddbCAS | 17626415PubMed | open url image1

[22]  I. Sánchez-Rodríguez, M. Huerta-Diaz, E. Choumiline, O. Holguín-Quiñones, J. Zertuche-González, Elemental concentrations in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environ. Pollut. 2001, 114, 145.
Elemental concentrations in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue.CrossRef | 11504337PubMed | open url image1

[23]  L. Morrison, H. Baumann, D. B. Stengel, An assessment of metal contamination along the Irish coast using the seaweed Ascophyllum nodosum (Fucales, Phaeophyceae). Environ. Pollut. 2008, 152, 293.
An assessment of metal contamination along the Irish coast using the seaweed Ascophyllum nodosum (Fucales, Phaeophyceae).CrossRef | 1:CAS:528:DC%2BD1cXivVyiurg%3D&md5=1b8cdc3dfc7fe622aca0bc9a30e9ce48CAS | 17949868PubMed | open url image1

[24]  I. M. Munda, A note on the ecology and growth forms of Chordaria flagelliformis. Nova Hedwigia 1979, 31, 567. open url image1

[25]  H. D. Nielsen, S. L. Nielsen, Adaptation to high light irradiances enhances the photosynthetic Cu2+ resistance in Cu2+ tolerant and non-tolerant populations of the brown macroalgae Fucus serratus. Mar. Pollut. Bull. 2010, 60, 710.
Adaptation to high light irradiances enhances the photosynthetic Cu2+ resistance in Cu2+ tolerant and non-tolerant populations of the brown macroalgae Fucus serratus.CrossRef | 1:CAS:528:DC%2BC3cXmsVehsrY%3D&md5=f11c299ac700fdbff8bca5ac4ff37bc0CAS | 20060134PubMed | open url image1

[26]  J. P. Parkhill, G. Maillet, J. J. Cullen, Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J. Phycol. 2001, 37, 517.
Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress.CrossRef | open url image1

[27]  S. Connan, D. B. Stengel, Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. Aquat. Toxicol. 2011, 104, 1.
Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin.CrossRef | 1:CAS:528:DC%2BC3MXnsVOksr4%3D&md5=ab7d87b009e43c833890d3df9175754cCAS | 21543047PubMed | open url image1

[28]  I. M. Munda, Salinity Dependent Accumulation of Zn, Co and Mn in Scytosiphon lomentaria (Lyngb.) Link and Enteromorpha intestinalis (L.) Link from the Adriatic Sea. Bot. Mar. 1984, 27, 451.
Salinity Dependent Accumulation of Zn, Co and Mn in Scytosiphon lomentaria (Lyngb.) Link and Enteromorpha intestinalis (L.) Link from the Adriatic Sea.CrossRef | open url image1

[29]  R. Boelens, D. M. Maloney, A. P. Parsons, A. R. Walsh, Ireland’s marine and coastal areas and adjacent seas 1999 (Marine Institute on behalf of the Department of Environment and Local Government and the Department of Marine and Natural Resources: Dublin, Ireland).

[30]  P. H. Santschi, L. Guo, I. D. Walsh, M. S. Quigley, M. Baskaran, Boundary exchange and scavenging of radionuclides in continental margin waters of the Middle Atlantic Bight: implications for organic carbon fluxes. Cont. Shelf Res. 1999, 19, 609.
Boundary exchange and scavenging of radionuclides in continental margin waters of the Middle Atlantic Bight: implications for organic carbon fluxes.CrossRef | open url image1

[31]  M. Gledhill, M. Nimmo, S. Hill, The release of copper-complexing ligands by the brown alga Fucus vesiculosus (Phaeophyceae) in response to increasing total copper levels. J. Phycol. 1999, 35, 501.
The release of copper-complexing ligands by the brown alga Fucus vesiculosus (Phaeophyceae) in response to increasing total copper levels.CrossRef | 1:CAS:528:DyaK1MXksl2hsr8%3D&md5=5f7fea4ad6f5ff96b09be2c75ec978e0CAS | open url image1

[32]  M. Vasconcelos, M. Leal, C. M. G. van den Berg, Influence of the nature of the exudates released by different marine algae on the growth, trace metal uptake, and exudation of Emiliania huxleyi in natural seawater. Mar. Chem. 2002, 77, 187.
Influence of the nature of the exudates released by different marine algae on the growth, trace metal uptake, and exudation of Emiliania huxleyi in natural seawater.CrossRef | 1:CAS:528:DC%2BD38XhtlSksrk%3D&md5=529bde0f3f0e7be9686abceceaa4e56fCAS | open url image1

[33]  M. Leal, M. Vasconcelos, C. M. G. van den Berg, Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures. Limnol. Oceanogr. 1999, 44, 1750.
Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures.CrossRef | 1:CAS:528:DyaK1MXnsVWisLY%3D&md5=543438e75d840431dd21d5d2d2368399CAS | open url image1

[34]  C. M. G. van den Berg, Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Theory. Mar. Chem. 1982, 11, 307.
Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Theory.CrossRef | 1:CAS:528:DyaL38XlsFShsbc%3D&md5=7b55329a8171d566b8d65defa535a862CAS | open url image1

[35]  C. M. G. van den Berg, Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc – APDC complex ions. Mar. Chem. 1985, 16, 121.
Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc – APDC complex ions.CrossRef | 1:CAS:528:DyaL2MXltV2lt7g%3D&md5=af7dc0eabea38995650c1798d98369f4CAS | open url image1

[36]  C. M. G. van den Berg, Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Experimental procedures and application to surface seawater. Mar. Chem. 1982, 11, 323.
Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Experimental procedures and application to surface seawater.CrossRef | 1:CAS:528:DyaL38XlsFShtr4%3D&md5=b98f0d8a4ef24ec7fa8ce135d7ca526bCAS | open url image1

[37]  D. R. Turner, M. Whitfield, A. G. Dickson, The equilibrium speciation of dissolved components in freshwater and sea water at 25 °C and 1 atm pressure. Geochim. Cosmochim. Acta 1981, 45, 855.
The equilibrium speciation of dissolved components in freshwater and sea water at 25 °C and 1 atm pressure.CrossRef | 1:CAS:528:DyaL3MXlsFKisbY%3D&md5=9a33084241b20a4323f5ebabf31e378eCAS | open url image1

[38]  J. R. Donat, K. W. Bruland, A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Mar. Chem. 1990, 28, 301.
A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters.CrossRef | 1:CAS:528:DyaK3cXit1artLo%3D&md5=72fc61cdb8f94e91d274b7d7ebe0e712CAS | open url image1

[39]  N. Turoczy, J. Sherwood, Modification of the van den Berg–Ruzic method for the investigation of complexation parameters of natural waters. Anal. Chim. Acta 1997, 354, 15.
Modification of the van den Berg–Ruzic method for the investigation of complexation parameters of natural waters.CrossRef | 1:CAS:528:DyaK2sXnvVShu74%3D&md5=ca88c151af6937db9f6eb825ce3554ccCAS | open url image1

[40]  H. A. Baumann, L. Morrison, D. B. Stengel, Metal accumulation and toxicity measured by PAM Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 2009, 72, 1063.
Metal accumulation and toxicity measured by PAM Chlorophyll fluorescence in seven species of marine macroalgae.CrossRef | 1:CAS:528:DC%2BD1MXkvVWjsL4%3D&md5=293f80d194d599a07d412063d7a2f1f3CAS | 19106005PubMed | open url image1

[41]  P. S. Rainbow, S. Kriefman, B. D. Smith, S. N. Luoma, Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining? Sci. Total Environ. 2011, 409, 1589.
Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining?CrossRef | 1:CAS:528:DC%2BC3MXisFWrsLs%3D&md5=5c1a61854f9a5c143414ac2c5fd59788CAS | 21315427PubMed | open url image1

[42]  D. M. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. R. Paquin, R. C. Santore, Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 2001, 20, 2383.
Biotic ligand model of the acute toxicity of metals. 1. Technical basis.CrossRef | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=5eae2dcf25fa5a3aba5cffe19524f13cCAS | 11596774PubMed | open url image1

[43]  R. Fuge, K. H. James, Trace metal concentrations in brown seaweeds, Cardigan Bay, Wales. Mar. Chem. 1973, 1, 281.
Trace metal concentrations in brown seaweeds, Cardigan Bay, Wales.CrossRef | 1:CAS:528:DyaE2cXhtVSjsLs%3D&md5=0ddebeba23f18e1c5fcda49141ef06bbCAS | open url image1

[44]  M. M. Littler, D. S. Littler, The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am. Nat. 1980, 116, 25.
The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model.CrossRef | open url image1

[45]  D. B. Stengel, A. Macken, L. Morrison, N. Morley, Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology. Mar. Pollut. Bull. 2004, 48, 902.
Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology.CrossRef | 1:CAS:528:DC%2BD2cXjsVaqsL8%3D&md5=3b80d546f218117ec900eff388b773fcCAS | 15111037PubMed | open url image1

[46]  D. Padilla, B. Allen, Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. J. Exp. Mar. Biol. Ecol. 2000, 250, 207.
Paradigm lost: reconsidering functional form and group hypotheses in marine ecology.CrossRef | 10969169PubMed | open url image1

[47]  V. Hatje, S. C. Apte, L. T. Hales, G. F. Birch, Dissolved trace metal distributions in Port Jackson estuary (Sydney Harbour), Australia. Mar. Pollut. Bull. 2003, 46, 719.
Dissolved trace metal distributions in Port Jackson estuary (Sydney Harbour), Australia.CrossRef | 1:CAS:528:DC%2BD3sXkt1Giurs%3D&md5=83f277671301ecfc8f820e7122356f4bCAS | 12787580PubMed | open url image1

[48]  Y. M. Nelson, L. W. Lion, M. L. Shuler, W. C. Ghiorse, Lead binding to metal oxide and organic phases of natural aquatic biofilms. Limnol. Oceanogr. 1999, 44, 1715.
Lead binding to metal oxide and organic phases of natural aquatic biofilms.CrossRef | 1:CAS:528:DyaK1MXnsVWisLg%3D&md5=8734979c2bdc26e9f4d52357dd535de8CAS | open url image1

[49]  U. Förstner, Sediment-associated contaminants – an overview of scientific bases for developing remedial options. Hydrobiologia 1987, 149, 221.
Sediment-associated contaminants – an overview of scientific bases for developing remedial options.CrossRef | open url image1

[50]  D. Mackey, E. Butler, P. Carpenter, H. Higgins, J. O’Sullivan, R. Plaschke, Trace elements and organic matter in a pristine environment: Bathurst Harbour, south-western Tasmania. Sci. Total Environ. 1996, 191, 137.
Trace elements and organic matter in a pristine environment: Bathurst Harbour, south-western Tasmania.CrossRef | 1:CAS:528:DyaK28Xlsl2ltLk%3D&md5=52785ad621e1386ed678e4590a02fafcCAS | open url image1

[51]  P. Kozelka, K. Bruland, Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island. Mar. Chem. 1998, 60, 267.
Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island.CrossRef | 1:CAS:528:DyaK1cXivVWgsb8%3D&md5=aa7db24dfe5072962e7385335462ed49CAS | open url image1

[52]  F. Muller, Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters. Mar. Chem. 1996, 52, 245.
Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters.CrossRef | 1:CAS:528:DyaK28XjsFOntb8%3D&md5=75414930ab44bfd69d20ad9bb3566a19CAS | open url image1

[53]  S. A. Skrabal, K. L. Lieseke, R. J. Kiester, Dissolved zinc and zinc-complexing ligands in an organic-rich estuary: benthic fluxes and comparison with copper speciation. Mar. Chem. 2006, 100, 108.
Dissolved zinc and zinc-complexing ligands in an organic-rich estuary: benthic fluxes and comparison with copper speciation.CrossRef | 1:CAS:528:DC%2BD28XjsFegs7Y%3D&md5=c2066e55223593513993e103143159e1CAS | open url image1

[54]  F. L. L. Muller, D. R. Kester, Voltammetric determination of the complexation parameters of zinc in marine and estuarine waters. Mar. Chem. 1991, 33, 71.
Voltammetric determination of the complexation parameters of zinc in marine and estuarine waters.CrossRef | 1:CAS:528:DyaK3MXitlClsrw%3D&md5=dcbc501b839390fd30560a2bb6c4fdbbCAS | open url image1

[55]  C. W. Henry, J. R. Donat, Zinc complexation and speciation in the Chesapeake Bay. EOS Trans. Am. Geophys. Union 1996, 77, 072. open url image1

[56]  B. L. Lewis, G. W. Luther, H. Lane, T. M. Church, Determination of metal–organic complexation in natural waters by SWASV with pseudopolarograms. Electroanal 1995, 7, 166.
Determination of metal–organic complexation in natural waters by SWASV with pseudopolarograms.CrossRef | 1:CAS:528:DyaK2MXltF2gtrg%3D&md5=f10f1a6961bee73463aedb6084b9206cCAS | open url image1

[57]  E. Morelli, G. Scarano, M. Ganni, L. Nannicini, Copper binding ability of the extracellular organic matter released by Skeletonema costatum. Chem. Spec. Bioavail. 1989, 1, 71.
| 1:CAS:528:DyaL1MXmt1yrur4%3D&md5=c335e13232f1d1c084d974d32b0cf780CAS | open url image1

[58]  K. Bruland, E. Rue, J. Donat, S. Skrabal, J. Moffett, Intercomparison of voltammetric techniques to determine the chemical speciation of dissolved copper in a coastal seawater sample. Anal. Chim. Acta 2000, 405, 99.
Intercomparison of voltammetric techniques to determine the chemical speciation of dissolved copper in a coastal seawater sample.CrossRef | 1:CAS:528:DC%2BD3cXhtVajsLg%3D&md5=6ea711bea79ec0b21ed9055585dfe43aCAS | open url image1

[59]  L. A. Miller, K. W. Bruland, Competitive equilibration techniques for determining transition metal speciation in natural waters: evaluation using model data. Anal. Chim. Acta 1997, 343, 161.
Competitive equilibration techniques for determining transition metal speciation in natural waters: evaluation using model data.CrossRef | 1:CAS:528:DyaK2sXis1Wmsr0%3D&md5=b985e67fc1c07376ae9d7a2204089c7fCAS | open url image1

[60]  L. Aristilde, Y. Xu, F. M. M. Morel, Weak organic ligands enhance zinc uptake in marine phytoplankton. Environ. Sci. Technol. 2012, 43, 5348. open url image1

[61]  D. Tang, K. Warnken, P. Santschi, Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston bay waters. Mar. Chem. 2002, 78, 29.
Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston bay waters.CrossRef | 1:CAS:528:DC%2BD38XitVyjt78%3D&md5=94ebe9e47662d32be12b7dc86fe725bcCAS | open url image1

[62]  F. Elbaz-Poulichet, N. H. Morley, A. Cruzado, Z. Velasquez, E. P. Achterberg, C. B. Braungardt, Trace metal and nutrient distribution in an extremely low pH (2.5) river–estuarine system, the Ria of Huelva (south–west Spain). Sci. Total Environ. 1999, 227, 73.
Trace metal and nutrient distribution in an extremely low pH (2.5) river–estuarine system, the Ria of Huelva (south–west Spain).CrossRef | 1:CAS:528:DyaK1MXhsVemu7g%3D&md5=e0bb025e05e7d30d8209785210c7eb65CAS | open url image1

[63]  A. M. Kraepiel, J. F. Chiffoleau, J. M. Martin, F. M. Morel, Geochemistry of trace metals in the Gironde estuary. Geochim. Cosmochim. Acta 1997, 61, 1421.
Geochemistry of trace metals in the Gironde estuary.CrossRef | 1:CAS:528:DyaK2sXivVSju7w%3D&md5=085b1a3c9c97687ba945577ef394b36cCAS | open url image1

[64]  R. N. Comans, C. P. van Dijk, Role of complexation processes in cadmium mobilization during estuarine mixing. Nature 1988, 336, 151.
Role of complexation processes in cadmium mobilization during estuarine mixing.CrossRef | 1:CAS:528:DyaL1MXivVyjsg%3D%3D&md5=1f6018734df7716ce41ac9ded1b72916CAS | open url image1

[65]  K. W. Warnken, G. A. Gill, L. L. Griffin, P. H. Santschi, Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Mar. Chem. 2001, 73, 215.
Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas.CrossRef | 1:CAS:528:DC%2BD3MXovFSmsg%3D%3D&md5=51d25684f09ab4e4c1fa6390e837cfdaCAS | open url image1

[66]  B. Sundby, L. G. Anderson, P. Hall, Å. Iverfeldt, The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim. Cosmochim. Acta 1986, 50, 1281.
The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface.CrossRef | 1:CAS:528:DyaL28XksVymtb8%3D&md5=12c74c557d3df1c8b799c1360f4ccc7cCAS | open url image1

[67]  Y. Louis, C. Garnier, V. Lenoble, S. Mounier, N. Cukrov, D. Omanovic, Kinetic and equilibrium studies of copper-dissolved organic matter complexation in water column of the stratified Krka River estuary (Croatia). Mar. Chem. 2009, 114, 110.
Kinetic and equilibrium studies of copper-dissolved organic matter complexation in water column of the stratified Krka River estuary (Croatia).CrossRef | 1:CAS:528:DC%2BD1MXmvVOnsr4%3D&md5=914d9e19c8f185fc99b18bb951f10163CAS | open url image1

[68]  G. Cauwet, Carbon inputs and biogeochemical processes at the halocline in a stratified estuary: Krka River, Yugoslavia. Mar. Chem. 1991, 32, 269.
Carbon inputs and biogeochemical processes at the halocline in a stratified estuary: Krka River, Yugoslavia.CrossRef | 1:CAS:528:DyaK3MXitlCmu74%3D&md5=a7484c1ced68bb3dd3a9a76b81ead1ffCAS | open url image1

[69]  L. S. Wen, P. Santschi, G. Gill, C. Paternostro, Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Mar. Chem. 1999, 63, 185.
Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase.CrossRef | 1:CAS:528:DyaK1cXnslKiur0%3D&md5=db25cef8e0ac7c36acb4896c392485a8CAS | open url image1

[70]  D. Tang, M. Shafer, D. Karner, J. Overdier, D. Armstrong, Factors affecting the presence of dissolved glutathione in estuarine waters. Environ. Sci. Technol. 2004, 38, 4247.
Factors affecting the presence of dissolved glutathione in estuarine waters.CrossRef | 1:CAS:528:DC%2BD2cXlsF2isrg%3D&md5=03d4bc63ef5e7991776fcc3999848d46CAS | 15382849PubMed | open url image1

[71]  A. Krezel, W. Bal, Coordination chemistry of glutathione. Acta Biochim. Pol. 1999, 46, 567.
| 1:CAS:528:DyaK1MXnsVCrsLo%3D&md5=d4194bd2a2b05e33217de17bb514a801CAS | 10698265PubMed | open url image1

[72]  N. Scott, K. M. Hatlelid, N. E. MacKenzie, D. E. Carter, Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem. Res. Toxicol. 1993, 6, 102.
Reactions of arsenic(III) and arsenic(V) species with glutathione.CrossRef | 1:CAS:528:DyaK3sXpsFOrtQ%3D%3D&md5=e2be32593b83ceb8c5e25590f5e7c0b3CAS | 8448339PubMed | open url image1

[73]  R. Kneer, M. H. Zenk, Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochem. 1992, 31, 2663.
Phytochelatins protect plant enzymes from heavy metal poisoning.CrossRef | 1:CAS:528:DyaK38XlvVKhs7k%3D&md5=2aa8e9265b506ddab8ff3eeed7e85ac7CAS | open url image1

[74]  G. Noctor, C. H. Foyer, Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249.
Ascorbate and glutathione: keeping active oxygen under control.CrossRef | 1:CAS:528:DyaK1cXjvVShtrc%3D&md5=b6c5bb8c67905633579240fde18e966fCAS | 15012235PubMed | open url image1

[75]  B. Pawlik-Skowrońska, J. Pirszel, M. Brown, Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat. Aquat. Toxicol. 2007, 83, 190.
Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat.CrossRef | 17532484PubMed | open url image1

[76]  H. Xue, L. Sigg, Comparison of the complexation of Cu and Cd by humic of fulvic acids and by ligands observed in lake waters. Aquat. Geochem. 1999, 5, 313.
Comparison of the complexation of Cu and Cd by humic of fulvic acids and by ligands observed in lake waters.CrossRef | 1:CAS:528:DC%2BD3cXivVCmtw%3D%3D&md5=dd5e994c77e3da496f90d35739d446a9CAS | open url image1

[77]  R. Yang, C. M. G. van den Berg, Metal complexation by humic substances in seawater. Environ. Sci. Technol. 2009, 43, 7192.
Metal complexation by humic substances in seawater.CrossRef | 1:CAS:528:DC%2BD1MXmvFOisr8%3D&md5=0a721e2f2401151b6784779d7735ac70CAS | 19848121PubMed | open url image1

[78]  T. de Castro Ramalho, E. F. F. da Cunha, R. B. de Alencastro, A. Espínola, Differential complexation between Zn2+ and Cd2+ with fulvic acid: a computational chemistry study. Water Air Soil Pollut. 2007, 183, 467.
Differential complexation between Zn2+ and Cd2+ with fulvic acid: a computational chemistry study.CrossRef | open url image1

[79]  A. Stockdale, E. Tipping, J. Hamilton-Taylor, S. Lofts, Trace metals in the open oceans: speciation modelling based on humic-type ligands. Environ. Chem. 2011, 8, 304.
Trace metals in the open oceans: speciation modelling based on humic-type ligands.CrossRef | 1:CAS:528:DC%2BC3MXptVWrsbc%3D&md5=c97dc6e4445668567387a5dc5d257c3eCAS | open url image1

[80]  J. Gavis, R. Guillard, B. L. Woodward, Cupric ion activity and the growth of phytoplankton isolated from different marine environments. J. Mar. Res. 1983, 41, 53.
Cupric ion activity and the growth of phytoplankton isolated from different marine environments.CrossRef | 1:CAS:528:DyaL3sXitFSqtLg%3D&md5=a05c5062768da35c398c22b892ed53c5CAS | open url image1

[81]  H. Pavia, E. Brock, Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 2000, 193, 285.
Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum.CrossRef | 1:CAS:528:DC%2BD3cXjtl2qtbs%3D&md5=8b81d02cb2dc9add7f93ca8dea4abbb9CAS | open url image1

[82]  J. L. Yates, P. Peckol, Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus versiculosus. Ecology 1993, 74, 1757.
Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus versiculosus.CrossRef | open url image1

[83]  P. D. Steinberg, J. A. Estes, F. C. Winter, Evolutionary consequences of food chain length in kelp forest communities. Proc. Natl. Acad. Sci. USA 1995, 92, 8145.
Evolutionary consequences of food chain length in kelp forest communities.CrossRef | 1:CAS:528:DyaK2MXnvVymsbo%3D&md5=a1086c9f752320456f21ed70aa8d0440CAS | 11607573PubMed | open url image1

[84]  P. Peckol, J. M. Krane, J. L. Yates, Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar. Ecol. Prog. Ser. 1996, 138, 209.
Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus.CrossRef | 1:CAS:528:DyaK28XlslKitbc%3D&md5=af15e156106c0494d26421f373375e91CAS | open url image1

[85]  E. Mawji, M. Gledhill, J. A. Milton, G. A. Tarran, S. Ussher, A. Thompson, Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ. Sci. Technol. 2008, 42, 8675.
Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean.CrossRef | 1:CAS:528:DC%2BD1cXhtlWqurzI&md5=e644b31df3c31400d24a182f5bbd5314CAS | 19192780PubMed | open url image1

[86]  I. Velasquez, B. L. Nunn, E. Ibisanmi, D. R. Goodlett, K. A. Hunter, S. G. Sander, Detection of hydroxamate siderophores in coastal and sub-Antarctic waters off the South Eastern coast of New Zealand. Mar. Chem. 2011, 126, 97.
Detection of hydroxamate siderophores in coastal and sub-Antarctic waters off the South Eastern coast of New Zealand.CrossRef | 1:CAS:528:DC%2BC3MXhtVynsb%2FL&md5=f3f8bf0a2bd32dcd36209398d8345995CAS | open url image1

[87]  RESCALE Summary Report Final 2013, pp. 26–36 (Marine Institute: Dublin, Ireland).

[88]  D. Point, G. Bareille, H. Pinaly, C. Belin, O. F. X. Donard, Multielemental speciation of trace elements in estuarine waters with automated on-site UV photolysis and resin chelation coupled to inductively coupled plasma mass spectrometry. Talanta 2007, 72, 1207.
Multielemental speciation of trace elements in estuarine waters with automated on-site UV photolysis and resin chelation coupled to inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BD2sXkvVWntb4%3D&md5=d077ef892d37dfe9d58005a068b6fe90CAS | 19071746PubMed | open url image1

[89]  C. M. G. van den Berg, S. Dharmvanij, Organic complexation of zinc in estuarine interstitial and surface water samples. Limnol. Oceanogr. 1984, 29, 1025.
Organic complexation of zinc in estuarine interstitial and surface water samples.CrossRef | 1:CAS:528:DyaL2MXms12qsw%3D%3D&md5=42817eac6069a8d9f404ccd1a5605cb6CAS | open url image1

[90]  C. L. Dryden, A. S. Gordon, J. R. Donat, Seasonal survey of copper-complexing ligands and thiol compounds in a heavily utilized, urban estuary: Elizabeth River, Virginia. Mar. Chem. 2007, 103, 276.
Seasonal survey of copper-complexing ligands and thiol compounds in a heavily utilized, urban estuary: Elizabeth River, Virginia.CrossRef | 1:CAS:528:DC%2BD2sXpslemsw%3D%3D&md5=a2d9f23c968aa47c8fdeece85604e807CAS | open url image1



Supplementary MaterialSupplementary Material (191 KB) Export Citation Cited By (1)