Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

The effect of anthropogenic volatile organic compound sources on ozone in Boise, Idaho

Victor Vargas A , Marie-Cecile Chalbot A , Robert O’Brien B , George Nikolich C , David W. Dubois C D , Vic Etyemezian C and Ilias G. Kavouras A C E

A Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.

B VOC Technologies, Inc., 19251 Se Highway 224, Damascus, OR 97089, USA.

C Division of Atmospheric Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV 89119, USA.

D Department of Plant and Environmental Sciences, Box 30003 MSC 3Q, Las Cruces, NM 88003, USA.

E Corresponding author. Email: ikavouras@uams.edu

Environmental Chemistry 11(4) 445-458 http://dx.doi.org/10.1071/EN13150
Submitted: 7 August 2013  Accepted: 10 April 2014   Published: 30 July 2014

Environmental context. Volatile organic compounds are precursors of ozone, a pollutant with adverse environmental effects. It is important to determine the associations between the various sources of volatile organic compounds and ozone levels because emission controls are based on sources. We estimated the contributions of specific sources of volatile organic compounds on ozone levels using both measurements and statistical models, and found that traffic is the largest source even in events when wildfire smoke is present.

Abstract. Here, we present the application of a tiered approach to apportion the contributions of volatile organic compound (VOC) sources on ozone (O3) concentrations. VOCs from acetylene to n-propylbenzene were measured at two sites at Boise, Idaho, using an online pneumatically focussed gas chromatography system. The mean 24-h concentrations of individual VOCs varied from 0.4 ppb C (parts per billion carbon) for 1-butene to 23.2 ppb C for m- and p-xylene. The VOC sources at the two monitoring sites were determined by positive matrix factorisation. They were attributed to: (i) liquefied petroleum and natural gas (LPG/NG) emissions; (ii) fugitive emissions of olefins from fuel and solvents; (iii) fugitive emissions of aromatic VOCs from area sources and (iv) vehicular emissions. Vehicle exhausts accounted for 36 to 45 % of VOCs followed by LPG/NG and fugitive emissions of aromatic VOCs. Evaluation of photochemical changes showed that the four separate VOC sources were identified by PMF rather than different stages of photochemical processing of fresh emissions. The contributions of VOC sources on daily 8-h maximum O3 concentrations measured at seven locations in the metropolitan urban area were identified by regression analysis. The four VOC sources added, on average, 6.4 to 16.5 parts per billion by volume (ppbv) O3, whereas the unexplained (i.e. intercept) O3 was comparable to non-wildfire policy-relevant background O3 levels in the absence of all anthropogenic emissions of VOC precursors in North America for the region. Traffic was the most significant source influencing O3 levels contributing up to 32 ppbv for days with O3 concentrations higher than 75 ppbv.

Additional keywords: benzene, positive matrix factorisation, regression analysis, traffic emissions.


References

[1]  C. Cai, J. T. Kelly, J. C. Avise, A. P. Kaduwela, W. R. Stockwell, Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions. J. Air Waste Manag. Assoc. 2011, 61, 559.
Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.CrossRef | 1:CAS:528:DC%2BC3MXntlyisbo%3D&md5=bec5e9d66f34dc87e3fbc51f54874b86CAS | 21608496PubMed | open url image1

[2]  J. Fuhrer, F. Booker, Ecological issues related to ozone: agricultural issues. Environ. Int. 2003, 29, 141.
Ecological issues related to ozone: agricultural issues.CrossRef | 1:CAS:528:DC%2BD3sXis1artbg%3D&md5=c1dc28380420ede4e4f2d5afa4858273CAS | 12676202PubMed | open url image1

[3]  N. A. Clark, P. A. Demers, C. J. Karr, M. Koehoorn, C. Lencar, L. Tamburic, M. Brauer, Effect of early life exposure to air pollution on development of childhood asthma. Environ. Health Perspect. 2009, 118, 284.
Effect of early life exposure to air pollution on development of childhood asthma.CrossRef | open url image1

[4]  M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y.-L. Shi, E. Calle, M. Thun, Long-term ozone exposure and mortality. N. Engl. J. Med. 2009, 360, 1085.
Long-term ozone exposure and mortality.CrossRef | 1:CAS:528:DC%2BD1MXjtFyisLc%3D&md5=468af0b9cdf6bed632ea84ca1e3691d6CAS | 19279340PubMed | open url image1

[5]  A. H. Goldstein, C. D. Koven, C. L. Heald, I. Y. Fung, Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proc. Natl. Acad. Sci. USA 2009, 106, 8835.
Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States.CrossRef | 1:CAS:528:DC%2BD1MXnsVant78%3D&md5=f052036530df26a4ed3e8f2941eef671CAS | 19451635PubMed | open url image1

[6]  C. Warneke, S. A. McKeen, J. A. deGouw, P. D. Goldan, W. C. Kuster, J. S. Holloway, E. J. Williams, B. M. Lerner, D. D. Parrish, M. Trainer, F. C. Fehsenfeld, S. Kato, E. L. Atlas, A. Baker, D. L. Blake, Determination of urban volatile organic compound emission ratios and comparison with an emissions database. J. Geophys. Res. – Atmos. 2007, 112, D10S47.
Determination of urban volatile organic compound emission ratios and comparison with an emissions database.CrossRef | open url image1

[7]  V. Junquera, M. M. Russell, W. Vizuete, Y. Kimura, D. Allen, Wildfires in eastern Texas in August and September 2000: emissions, aircraft measurements, and impact on photochemistry. Atmos. Environ. 2005, 39, 4983.
Wildfires in eastern Texas in August and September 2000: emissions, aircraft measurements, and impact on photochemistry.CrossRef | 1:CAS:528:DC%2BD2MXntlSnsLw%3D&md5=fd721a9d46a0e5e09f930798824a0339CAS | open url image1

[8]  J. R. Arnold, R. L. Dennis, G. S. Tonnesen, Diagnostic evaluation of numerical air quality models with specialized ambient observations: testing the Community Multiscale Air Quality modeling system (CMAQ) at selected SOS 95 ground sites. Atmos. Environ. 2003, 37, 1185.
Diagnostic evaluation of numerical air quality models with specialized ambient observations: testing the Community Multiscale Air Quality modeling system (CMAQ) at selected SOS 95 ground sites.CrossRef | 1:CAS:528:DC%2BD3sXhslGqsbs%3D&md5=2e11114b0e040b09335929c696811d71CAS | open url image1

[9]  S. Arunachalam, B. Wang, N. Davis, B. Baek, H. J. I. Levy, Effect of chemistry-transport model scale and resolution on population exposure to PM2.5 from aircraft emissions during landing and takeoff. Atmos. Environ. 2011, 45, 3294.
Effect of chemistry-transport model scale and resolution on population exposure to PM2.5 from aircraft emissions during landing and takeoff.CrossRef | 1:CAS:528:DC%2BC3MXlslWqsbc%3D&md5=bd4df33333c024bf5f3361f75565fdcdCAS | open url image1

[10]  X. Tie, G. Brasseur, Z. Ying, Impact of model resolution on chemical ozone formation in Mexico City: application of the WRF-Chem model. Atmos. Chem. Phys. 2010, 10, 8983.
Impact of model resolution on chemical ozone formation in Mexico City: application of the WRF-Chem model.CrossRef | 1:CAS:528:DC%2BC3MXktlant7c%3D&md5=cd963265a0c085d811ca0e5a7870e370CAS | open url image1

[11]  L. C. Valin, A. R. Russell, R. C. Hudman, R. C. Cohen, Effects of model resolution on the interpretation of satellite NO2 observations. Atmos. Chem. Phys. 2011, 11, 11 647.
Effects of model resolution on the interpretation of satellite NO2 observations.CrossRef | 1:CAS:528:DC%2BC38Xis1Kktrk%3D&md5=0a0952971e9c4474d4d0e761a054c3bbCAS | open url image1

[12]  H. Cheng, H. Guo, X. M. Wang, S. M. Saunders, S. H. M. Lam, F. Jiang, T. J. Wang, A. J. Ding, S. C. Lee, K. F. Ho, On the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM). Environ. Sci. Poll. Res. 2010, 17, 547.
On the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM).CrossRef | 1:CAS:528:DC%2BC3cXitVSis7w%3D&md5=f7708fae04698af7fb4899acc7cf4a96CAS | open url image1

[13]  H. R. Cheng, H. Guo, S. M. Saunders, S. H. M. Lam, F. Jiang, X. M. Wang, I. J. Simpson, D. R. Blake, P. K. K. Louie, T. J. Wang, Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model. Atmos. Environ. 2010, 44, 4199.
Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model.CrossRef | 1:CAS:528:DC%2BC3cXhtFChsL%2FF&md5=adfaf3c5dab307d2ef70d429a6019c3aCAS | open url image1

[14]  Z. H. Ling, H. Guo, H. R. Cheng, Y. F. Yu, Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environ. Pollut. 2011, 159, 2310.
Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China.CrossRef | 1:CAS:528:DC%2BC3MXhtFeht7nP&md5=58d16190b59fe17bacf3c3224a60ae76CAS | 21616570PubMed | open url image1

[15]  W. P. L. Carter, Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manag. Assoc. 1994, 44, 881.
Development of ozone reactivity scales for volatile organic compounds.CrossRef | 1:CAS:528:DyaK2MXlvVKmurw%3D&md5=e8806064480e1b856d961de401738635CAS | open url image1

[16]  L. H. Wang, J. B. Milford, W. P. L. Carter, Reactivity estimates for aromatic compounds. Part 2. Uncertainty in incremental reactivities. Atmos. Environ. 2000, 34, 4349.
Reactivity estimates for aromatic compounds. Part 2. Uncertainty in incremental reactivities.CrossRef | 1:CAS:528:DC%2BD3cXlsVOktb4%3D&md5=659979f0631c6de325754a96d4ceecaeCAS | open url image1

[17]  B. H. Czader, D. W. Byun, S. T. Kim, W. P. L. Carter, A study of VOC reactivity in the Houston–Galveston air mixture utilizing an extended version of SAPRC-99 chemical mechanism. Atmos. Environ. 2008, 42, 5733.
A study of VOC reactivity in the Houston–Galveston air mixture utilizing an extended version of SAPRC-99 chemical mechanism.CrossRef | 1:CAS:528:DC%2BD1cXosVaisLs%3D&md5=d172f764306a400696f46294953674f7CAS | open url image1

[18]  W. P. L. Carter, J. H. Seinfeld, Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming. Atmos. Environ. 2012, 50, 255.
Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming.CrossRef | 1:CAS:528:DC%2BC38XitFWrsro%3D&md5=9ffd858149e454aa928d0e97021005f3CAS | open url image1

[19]  M. Barna, B. Lamb, S. O’Neil, B. Westberg, C. Figueroa-Kaminsky, S. Otterson, C. Bowman, J. DeMay, Modeling ozone formation and transport in the Cascadia region of the Pacific Northwest. J. Appl. Meteorol. 2000, 39, 349.
Modeling ozone formation and transport in the Cascadia region of the Pacific Northwest.CrossRef | open url image1

[20]  J. J. Carroll, A. J. Dixon, Regional scale transport over complex terrain, a case study: tracing the Sacramento plume in the Sierra Nevada of California. Atmos. Environ. 2002, 36, 3745.
Regional scale transport over complex terrain, a case study: tracing the Sacramento plume in the Sierra Nevada of California.CrossRef | 1:CAS:528:DC%2BD38Xms1Gqs7o%3D&md5=a2d97856dc882516d476bf26f71b90b6CAS | open url image1

[21]  I. G. Kavouras, D. W. DuBois, V. Etyemezian, G. Nikolich, G. Spatiotemporal variability of ground-level ozone and influence of smoke in Treasure Valley, Idaho. Atmos. Res. 2013, 124, 44.
G. Spatiotemporal variability of ground-level ozone and influence of smoke in Treasure Valley, Idaho.CrossRef | 1:CAS:528:DC%2BC3sXjs1Cjurc%3D&md5=1a77c2db2381c4fd077a6e3b663b7e94CAS | open url image1

[22]  M. Leuchner, B. Rappengluck, VOC source-receptor relationships in Houston during TexAQS-II. Atmos. Environ. 2010, 44, 4056.
VOC source-receptor relationships in Houston during TexAQS-II.CrossRef | 1:CAS:528:DC%2BC3cXhtFCnsLbE&md5=ea6e0223bd21feba9b12a43b775de52eCAS | open url image1

[23]  S. G. Brown, A. Frankel, H. R. Hafner, Source apportionment of VOC in the Los Angeles area using positive matrix factorization. Atmos. Environ. 2007, 41, 227.
Source apportionment of VOC in the Los Angeles area using positive matrix factorization.CrossRef | 1:CAS:528:DC%2BD28XhtlajsrzP&md5=6c9abf59e7edc5ef1fc8da905c7dfa67CAS | open url image1

[24]  D. M. Bon, I. M. Ulbrich, J. A. de Gouw, C. Warneke, W. C. Kuster, M. L. Alexander, A. Baker, A. J. Beyersdorf, D. Blake, R. Fall, J. L. Jimenez, S. C. Herndon, L. G. Huey, W. B. Knighton, J. Ortega, S. Springston, O. Vargas, Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios and source attribution. Atmos. Chem. Phys. 2011, 11, 2399.
Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios and source attribution.CrossRef | 1:CAS:528:DC%2BC3MXnvFajsrw%3D&md5=d149f5dbf62de2d806d0352610b2b90eCAS | open url image1

[25]  Z. B. Yuan, A. K. H. Lau, M. Shao, P. K. K. Louie, S. C. Liu, T. Zhu, Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. J. Geophys. Res. – Atmos. 2009, 114, D00G15.
Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing.CrossRef | open url image1

[26]  C. Gaimoz, S. Sauvage, V. Gros, F. Hermann, J. Williams, N. Locoge, O. Perrussel, B. Bonsang, O. d’Argouges, R. Sarda-Esteve, J. Sciare, Volatile organic compounds sources in Paris in spring 2007. Part II: sources apportionment using positive matrix factorization. Environ. Chem. 2011, 8, 91.
Volatile organic compounds sources in Paris in spring 2007. Part II: sources apportionment using positive matrix factorization.CrossRef | 1:CAS:528:DC%2BC3MXjs1Glsb0%3D&md5=d8888e9a3fcffdefa756f91e0251982dCAS | open url image1

[27]  Y. Morino, T. Ohara, Y. Yokouchi, Comprehensive source apportionment of volatile organic compounds using observational data, two receptor models and an emission inventory in Tokyo metropolitan area. . J. Geophys. Res. – Atmos. 2011, 116, D02311.
Comprehensive source apportionment of volatile organic compounds using observational data, two receptor models and an emission inventory in Tokyo metropolitan area. .CrossRef | open url image1

[28]  H. Jorquera, B. Rappengluck, Receptor modeling of ambient VOC at Santiago, Chile. Atmos. Environ. 2004, 38, 4243.
Receptor modeling of ambient VOC at Santiago, Chile.CrossRef | 1:CAS:528:DC%2BD2cXltlyhsLs%3D&md5=1181afe60d507d054bef3a69f44cfae4CAS | open url image1

[29]  B. Yuan, M. Shao, J. deGouw, D. D. Parrish, S. Lu, M. Wang, L. Zeng, Q. Zhang, Y. Song, J. Zhang, M. Hu, Volatile organic compounds (VOCs) in urban area: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J. Geophys. Res. – Atmos. 2012, 117, D24302.
Volatile organic compounds (VOCs) in urban area: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis.CrossRef | open url image1

[30]  R. J. O’Brien, T. R. Smith, U.S. Patent 6 865 926. Method and apparatus for sample analysis 2005.

[31]  R. J. O’Brien, U.S. Patent 6 952 945. Method and apparatus for concentrating samples for analysis 2005.

[32]  R. O’Brien, The GC-in-a-PC: real-time Web-based monitoring of VOC and air toxics, Proceedings of the Annual Air & Waste Management Association Conference, 20–23 June 2006, New Orleans, LA, 2006 (Air and Wastes Management Association, Pittsburgh, PA).

[33]  R. O’Brien, K. Percy, A. Legge, Co-measurement of volatile organic and sulphur compounds in the athabasca oil sands region by dual detector pneumatic focusing gas chromatography (PFGC), in Development in Environmental Science II, Alberta Oil Sands, Energy, Industry and the Environment (Ed. K. Percy), 2012, Ch 6, pp. 113–144 (Elsevier: Amsterdam, the Netherlands).

[34]  EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals and User Guide. EPA 600/R-08/108 2008 (US Environmental Protection Agency, Office of Research and Development: Washington, DC).

[35]  P. Paatero, P. K. Hopke, X.-H. Song, Z. Ramadan, Understanding and controlling rotation in factor analytic models. Chemom. Intell. Lab. Syst. 2002, 60, 253.
Understanding and controlling rotation in factor analytic models.CrossRef | 1:CAS:528:DC%2BD38XksVyhuw%3D%3D&md5=180d945c862296d9d378a5c5f7148c48CAS | open url image1

[36]  P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111.
Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values.CrossRef | open url image1

[37]  A. V. Polissar, P. K. Hopke, W. C. Malm, F. Sisler, The ratio of aerosol optical absorption coefficients to sulfur concentrations, as an indicator of smoke from forest fires when sampling in polar regions. Atmos. Environ. 1996, 30, 1147.
The ratio of aerosol optical absorption coefficients to sulfur concentrations, as an indicator of smoke from forest fires when sampling in polar regions.CrossRef | 1:CAS:528:DyaK28XhslGmurY%3D&md5=98164e7770dd9b96bbcd7c8979f88362CAS | open url image1

[38]  S. Juntto, P. Paatero, Analysis of daily precipitation data by positive matrix factorization. Environmetrics 1994, 5, 127.
Analysis of daily precipitation data by positive matrix factorization.CrossRef | open url image1

[39]  Locating and Estimating Air Emissions from Sources of Styrene, EPA-454-R-93-011 1993 (US Environmental Protection Agency, Office of Air Quality, Planning and Standards: Research Triangle Park, NC).

[40]  Asphalt Emulsion Technology, Number E-C102 2006 (Transportation Research Board of the National Academies: Washington, DC).

[41]  P. Paatero, P. K. Hopke, B. A. Begum, S. K. Biswas, A graphical diagnostic method for assessing the rotation in factor analysitcal models of atmospheric pollution. Atmos. Environ. 2005, 39, 193.
A graphical diagnostic method for assessing the rotation in factor analysitcal models of atmospheric pollution.CrossRef | 1:CAS:528:DC%2BD2cXhtVaisb%2FP&md5=ab31d63e433d4701eb7d873ac505a76eCAS | open url image1

[42]  P. Paatero, Least-squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23.
Least-squares formulation of robust non-negative factor analysis.CrossRef | 1:CAS:528:DyaK2sXivFKgtLc%3D&md5=58aa60df74b28edc0b98a5a66775f61cCAS | open url image1

[43]  X.-H. Song, A. V. Polissar, P. K. Hopke, Sources of fine particle composition in the northeastern US. Atmos. Environ. 2001, 35, 5277.
Sources of fine particle composition in the northeastern US.CrossRef | 1:CAS:528:DC%2BD3MXmvVGgtbY%3D&md5=ec099e46ec59742f2a75633ccf6d510fCAS | open url image1

[44]  Idaho Roads – 2007 Annual Average Daily Traffic 2007 (Idaho Transportation Department). Available at http://www.itd.idaho.gov/planning/gis/maps/spatialdata/AADT2007.zip [Verified 4 February 2013].

[45]  EMFAC2011 2011 (California Air Resources Board: Sacramento, CA). [Updated January 2013].

[46]  T. Schmitz, D. Hassel, F. J. Weber, Determination of VOC-component in the exhaust of gasoline and diesel passenger cars. Atmos. Environ. 2000, 34, 4639.
Determination of VOC-component in the exhaust of gasoline and diesel passenger cars.CrossRef | 1:CAS:528:DC%2BD3cXmtVCguro%3D&md5=631c313a70aa18e9b67cb4857c54eec7CAS | open url image1

[47]  S. Liu, X.-Z. Liang, Observed diurnal cycle climatology of planter boundary layer height. J. Clim. 2010, 23, 5790.
Observed diurnal cycle climatology of planter boundary layer height.CrossRef | open url image1

[48]  Z. J. Zhao, S. Husainy, G. D. Smith, Kinetic studies of the gas-phase reactions of NO3 radicals with series of 1-alkenes, dienes, cycloalkenes, alkenols and alkenals. J. Phys. Chem. 2011, 115, 12 161.
Kinetic studies of the gas-phase reactions of NO3 radicals with series of 1-alkenes, dienes, cycloalkenes, alkenols and alkenals.CrossRef | 1:CAS:528:DC%2BC3MXhtlWjt7%2FJ&md5=dfa2cc34bdf45a07c6860ce4e8dd726fCAS | open url image1

[49]  Rethinking the Ozone Problem in Urban and Regional Air Pollution 1991 (National Research Council, National Academy Press: Washington, DC).

[50]  H. Simon, L. Beck, P. V. Bhave, F. Divita, Y. Hsu, D. Luecken, J. D. Mobley, G. A. Pouliot, A. Reff, G. Sarwar, M. Strum, The development and uses of EPA’s SPECIATE database. Atmos. Poll. Res. – Atmos. 2010, 1, 196.
The development and uses of EPA’s SPECIATE database.CrossRef | 1:CAS:528:DC%2BC3cXhtlelsL7I&md5=d83c082270436b454ec06137d633e4deCAS | open url image1

[51]  D. R. Blake, F. S. Rowland, Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality. Science 1995, 269, 953.
Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality.CrossRef | 1:CAS:528:DyaK2MXnsFOmtL4%3D&md5=f73484cba40d5ce0de8031efffba9487CAS | 17807730PubMed | open url image1

[52]  Northern Ada County Air Quality Maintenance Area Second 10-Year Carbon Monoxide Limited Maintenance Plan. Appendix C 2011 (Idaho Department of Environmental Quality: Meridian, ID). Available at http://www.deq.idaho.gov/media/909870-ada-county-co-maintenance-plan-2011-appendices.pdf [Verified January 2013].

[53]  Final Comformity of the FY2008–2012 Northern Ada County Transportation Improvement Program. Report number 11-2007 2007 (Community Planning Association of Southwest Idaho: Meridian, ID).

[54]  J. A. de Gouw, A. M. Middlebrook, C. Warneke, P. D. Goldan, W. C. Kuster, J. M. Roberts, F. C. Fehsenfeld, D. R. Worsnop, M. R. Canagaratna, A. A. P. Pszenny, W. C. Keene, M. Marchewka, S. B. Bertman, T. S. Bates, Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002. J. Geophys. Res. – Atmos. 2005, 110, D16305.
Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002.CrossRef | open url image1

[55]  I. G. Kavouras, B. Zielisnka, The effect of fuel evaporation and biomass burning on toluene concentrations in an urban area. Water Air Soil Pollut. 2012, 223, 5931.
The effect of fuel evaporation and biomass burning on toluene concentrations in an urban area.CrossRef | 1:CAS:528:DC%2BC38Xhs1Sru7jN&md5=126a5cb3f245fd525905571f17626660CAS | open url image1

[56]  R. Atkinson, Gas phase tropospheric chemistry of volatile organic compounds. I. Alkanes and alkenes. J. Phys. Chem. Ref. Data 1997, 26, 521.
Gas phase tropospheric chemistry of volatile organic compounds. I. Alkanes and alkenes.CrossRef | 1:CAS:528:DyaK2sXjsFGhsb8%3D&md5=da27ccc3028cf950279828482e91ae53CAS | open url image1

[57]  C. Warneke, S. A. McKeen, J. A. de Gouw, P. D. Goldan, W. C. Kuster, J. S. Holloway, E. J. Williams, B. M. Lerner, D. D. Parrish, M. Trainer, F. C. Fehsenfeld, S. Kato, E. L. Atlas, A. Baker, D. R. Blake, Determination of urban volatile organic compound emission ratios and comparison with an emissions database. J. Geophys. Res. – Atmos. 2007, 112, D10S47.
Determination of urban volatile organic compound emission ratios and comparison with an emissions database.CrossRef | open url image1

[58]  C. Emery, J. Jung, N. Downey, J. Johnson, M. Jimenez, G. Yarwood, R. Morris, Regional and global modeling estimates of policy relevant background ozone over the United States. Atmos. Environ. 2012, 47, 206.
Regional and global modeling estimates of policy relevant background ozone over the United States.CrossRef | 1:CAS:528:DC%2BC3MXhs1Krtb3O&md5=e4e7930a94c556d234cf9895cac661faCAS | open url image1



Export Citation