Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms

Elliott G. Duncan A C D , William A. Maher A , Simon D. Foster A , Frank Krikowa A and Katarina M. Mikac B

A Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT 2601, Australia.

B Institute for Conservation Biology and Environmental Management, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.

C Present address, CSIRO Plant Industry, Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA 6014, Australia.

D Corresponding author. Email: elliott.duncan@csiro.au.

Environmental Chemistry 11(3) 289-300 http://dx.doi.org/10.1071/EN13155
Submitted: 19 August 2013  Accepted: 30 January 2014   Published: 5 June 2014

Environmental context. Arsenoribosides are the major arsenic species in marine macro-algae, yet inorganic arsenic is the major arsenic species found in seawater. We investigated the degradation of arsenoribosides associated with Ecklonia radiata by the use of microcosms containing both natural and autoclaved seawater and sand. The decomposition and persistence of arsenic species was linked to the use of autoclaved seawater and sand, which suggests that arsenoriboside degradation is governed by the microbial composition of microenvironments within marine systems.

Abstract. We investigated the influence of microbial communities on the degradation of arsenoribosides from E. radiata tissues decomposing in sand and seawater-based microcosms. During the first 30 days, arsenic was released from decomposing E. radiata tissues into seawater and sand porewaters in all microcosms. In microcosms containing autoclaved seawater and autoclaved sand, arsenic was shown to persist in soluble forms at concentrations (9–18 µg per microcosm) far higher than those present initially (~3 µg per microcosm). Arsenoribosides were lost from decomposing E. radiata tissues in all microcosms with previously established arsenoriboside degradation products, such as thio-arsenic species, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA) and arsenate (AsV) observed in all microcosms. DMAE and DMA persisted in the seawater and sand porewaters of microcosms containing autoclaved seawater and autoclaved sand. This suggests that the degradation step from arsenoribosides → DMAE occurs on algal surfaces, whereas the step from DMAE → AsV occurs predominantly in the water-column or sand–sediments. This study also demonstrates that disruptions to microbial connectivity (defined as the ability of microbes to recolonise vacant habitats) result in alterations to arsenic cycling. Thus, the re-cycling of arsenoribosides released from marine macro-algae is driven by microbial complexity plus microbial connectivity rather than species diversity as such, as previously assumed.

Additional keywords: algal decomposition, arsenic cycling, macro-algae, microbial ecology.


References

[1]  R. Tukai, W. A. Maher, I. J. McNaught, M. J. Ellwood, M. Coleman, Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia Mar. Freshwater Res. 2002, 53, 971.
Occurrence and chemical form of arsenic in marine macroalgae from the east coast of AustraliaCrossRef | 1:CAS:528:DC%2BD3sXlvFamtQ%3D%3D&md5=866ec2a2f8543328ffbb93c5a51817abCAS | open url image1

[2]  S. Foster, W. Maher, F. Krikowa, Changes in proportions of arsenic species within an Ecklonia radiata food chain Environ. Chem. 2008, 5, 176.
Changes in proportions of arsenic species within an Ecklonia radiata food chainCrossRef | 1:CAS:528:DC%2BD1cXntlCrtrk%3D&md5=936d1ee95a95bd5eaada1dd341560636CAS | open url image1

[3]  D. Thomson, W. Maher, S. Foster, Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia Appl. Organomet. Chem. 2007, 21, 396.
Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, AustraliaCrossRef | 1:CAS:528:DC%2BD2sXms1yit7s%3D&md5=71e7b70107e310574ae0c95fa0523870CAS | open url image1

[4]  M. Morita, Y. Shibata, Chemical form of arsenic in marine macroalgae Appl. Organomet. Chem. 1990, 4, 181.
Chemical form of arsenic in marine macroalgaeCrossRef | 1:CAS:528:DyaK3MXmvVGlsQ%3D%3D&md5=8062f1af6d48f5cfd6e7fce5ab2ef375CAS | open url image1

[5]  J. S. Edmonds, K. A. Francesconi, Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem Nature 1981, 289, 602.
Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystemCrossRef | 1:CAS:528:DyaL3MXktVegt70%3D&md5=122ccd5d6fc3349be3a12ee5a677126eCAS | open url image1

[6]  S. Foster, W. Maher, Degradation of arsenoribosides from marine macroalgae in simulated rock pools, in Arsenic in geosphere and human diseases (Eds J. S. Jean, J. Bundschuh, P. Battacharya) 2010, pp. 230–232 (CRC Press: London).

[7]  P. Pengprecha, M. Wilson, A. Raab, J. Feldmann, Biodegradation of arsenosugars in marine sediment Appl. Organomet. Chem. 2005, 19, 819.
Biodegradation of arsenosugars in marine sedimentCrossRef | 1:CAS:528:DC%2BD2MXmtFKku70%3D&md5=d7ba23d5387d718b1cc5410e11df7589CAS | open url image1

[8]  J. Navratilova, G. Raber, S. J. Fisher, K. A. Francesconi, Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic Environ. Chem. 2011, 8, 44.
Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenicCrossRef | 1:CAS:528:DC%2BC3MXjs1GlsLc%3D&md5=fc9c0433f676675f071cfc450fa09bebCAS | open url image1

[9]  J. S. Edmonds, K. A. Francesconi, J. A. Hansen, Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna Experientia 1982, 38, 643.
Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine faunaCrossRef | 1:CAS:528:DyaL38Xks12js7s%3D&md5=808a98cceec15594630522cc0516f90cCAS | open url image1

[10]  K. A. Smart, H. L. Smart, C. R. Jackson, The effects of fine scale environmental variation on microbial community structure and functioning in aquatic environments, in Environmental Microbiology Research Trends (Ed. G. V. Kurladze) 2008, pp. 167–190 (Nova Science Publishers: New York).

[11]  J. C. Sanderson, Subtidal macroalgal assemblages in temperate Australian coastal waters, Australia. State of the Environment Technical Paper Series (Estuaries and the Sea) 1997 (Department of the Environment: Canberra).

[12]  S. Foster, D. Thomson, W. Maher, Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum Mar. Chem. 2008, 108, 172.
Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutumCrossRef | 1:CAS:528:DC%2BD1cXnvVyrtQ%3D%3D&md5=07a9f29543ef9407437f7acc20dd2f39CAS | open url image1

[13]  J. Cannon, J. Edmonds, K. Francesconi, C. Raston, J. Saunders, B. Skelton, A. H. White, Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urine Aust. J. Chem. 1981, 34, 787.
Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urineCrossRef | 1:CAS:528:DyaL3MXltFemt7k%3D&md5=5a0a0e96ea021adf42d99c0cda9d0cdaCAS | open url image1

[14]  R. Minhas, D. S. Forsyth, B. Dawson, Synthesis and characterization of arsenobetaine and arsenocholine derivatives Appl. Organomet. Chem. 1998, 12, 635.
Synthesis and characterization of arsenobetaine and arsenocholine derivativesCrossRef | 1:CAS:528:DyaK1cXlsFOnu78%3D&md5=d9dfdc7ffcef58c23a3e98c2ab1aea84CAS | open url image1

[15]  A. Merijanian, R. A. Zingaro, Arsine oxides Inorg. Chem. 1966, 5, 187.
Arsine oxidesCrossRef | 1:CAS:528:DyaF28Xktl2lsQ%3D%3D&md5=9be729a3a996a5a5ab269dcee8b1463aCAS | open url image1

[16]  G. M. Momplaisir, J. S. Blais, M. Quinteiro, W. D. Marshall, Determination of arsenobetaine, arsenocholine, and tetramethylarsonium cations in seafoods and human urine by high-performance liquid chromatography-thermochemical hydride generation-atomic absorption spectrometry J. Agric. Food Chem. 1991, 39, 1448.
Determination of arsenobetaine, arsenocholine, and tetramethylarsonium cations in seafoods and human urine by high-performance liquid chromatography-thermochemical hydride generation-atomic absorption spectrometryCrossRef | 1:CAS:528:DyaK3MXkvFSktLw%3D&md5=e52d95e82825e907b6dbe456d4a0d2b2CAS | open url image1

[17]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, Accumulation of arsenic in yelloweye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate Sci. Total Environ. 1989, 79, 59.
Accumulation of arsenic in yelloweye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenateCrossRef | 1:CAS:528:DyaL1MXhsV2gs70%3D&md5=8d0cc99948a98490c4dde343a8e5119cCAS | 2928771PubMed | open url image1

[18]  A. D. Madsen, W. Goessler, S. N. Pedersen, K. A. Francesconi, Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies J. Anal. At. Spectrom. 2000, 15, 657.
Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studiesCrossRef | 1:CAS:528:DC%2BD3cXjslWksLY%3D&md5=a08a15985d64a6286e04d5dac6926e72CAS | open url image1

[19]  R. Raml, W. Goessler, K. A. Francesconi, Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry J. Chromatogr. A 2006, 1128, 164.
Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometryCrossRef | 1:CAS:528:DC%2BD28XptFSrsr0%3D&md5=9b841870c0ada40257efbcef5505b96eCAS | 16854422PubMed | open url image1

[20]  S. Baldwin, M. Deaker, W. Maher, Low volume microwave digestion of marine biological tissues for the measurement of trace elements Analyst 1994, 119, 1701.
Low volume microwave digestion of marine biological tissues for the measurement of trace elementsCrossRef | 1:CAS:528:DyaK2cXmtVSgtLo%3D&md5=8d057aac52e04fda24593f1e2042dfb4CAS | 7978323PubMed | open url image1

[21]  W. Maher, F. Krikowa, J. Kirby, A. Townsend, P. Snitch, Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications Aust. J. Chem. 2003, 56, 103.
Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applicationsCrossRef | 1:CAS:528:DC%2BD3sXjslGnsLk%3D&md5=4971859f9f7b98405da7912cfe99a329CAS | open url image1

[22]  W. Maher, S. Foster, F. Krikowa, P. Snitch, G. Chapple, P. Craig, Measurement of trace metals and phosphorus in marine animal and plant tissues by low volume microwave digestion and ICPMS J. Anal. At. Spectrom. 2001, 22, 361.
| 1:CAS:528:DC%2BD3MXovVOisbs%3D&md5=f55b9a4f1c125a0e56b834e63d8c7fa7CAS | open url image1

[23]  J. Kirby, W. Maher, Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS J. Anal. At. Spectrom. 2002, 17, 838.
Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MSCrossRef | 1:CAS:528:DC%2BD38XlvVKhsbs%3D&md5=b8dd1f69b3893d516db496d1cbbf4674CAS | open url image1

[24]  M. J. Ellwood, W. A. Maher, Measurement of arsenic species in marine sediments by high-performance liquid chromatography–inductively coupled plasma mass spectrometry Anal. Chim. Acta 2003, 477, 279.
Measurement of arsenic species in marine sediments by high-performance liquid chromatography–inductively coupled plasma mass spectrometryCrossRef | 1:CAS:528:DC%2BD38XpvVWku78%3D&md5=d96cb3acbd708ebaa6499fbfe805e5deCAS | open url image1

[25]  S. Foster, W. Maher, F. Krikowa, S. Apte, A microwave assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues Talanta 2007, 71, 537.
A microwave assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissuesCrossRef | 1:CAS:528:DC%2BD2sXotFSltA%3D%3D&md5=a1020889f64757b5876b3cabc25648c2CAS | 19071338PubMed | open url image1

[26]  J. Kirby, W. Maher, M. Ellwood, F. Krikowa, Arsenic species determination in biological tissues by HPLC-ICP-MS and HPLC-HG-ICP-MS Aust. J. Chem. 2004, 57, 957.
Arsenic species determination in biological tissues by HPLC-ICP-MS and HPLC-HG-ICP-MSCrossRef | 1:CAS:528:DC%2BD2cXps1SjsrY%3D&md5=b727b765c05fd4fb02e7669ceea283d7CAS | open url image1

[27]  W. A. Maher, S. Foster, F. Krikowa, E. Duncan, A. St John, K. Hug, J. W. Moreau, Thio arsenic species measurements in marine organisms and geothermal waters Microchem. J. 2013, 111, 82.
Thio arsenic species measurements in marine organisms and geothermal watersCrossRef | 1:CAS:528:DC%2BC3sXivFylt7k%3D&md5=9743dba6fef1b29b3536642be768ff87CAS | open url image1

[28]  S. Foster, W. Maher, E. Schmeisser, A. Taylor, F. Krikowa, S. Apte, Arsenic speciation in a rocky intertidal marine food chain in NSW, Australia, revisited Environ. Chem. 2006, 3, 304.
Arsenic speciation in a rocky intertidal marine food chain in NSW, Australia, revisitedCrossRef | 1:CAS:528:DC%2BD28XptVaksr4%3D&md5=e0cf36f25f038b024d2f7718ca43d945CAS | open url image1

[29]  E. Duncan, S. Foster, W. Maher, Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta Bot. Mar. 2010, 53, 377.
Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolectaCrossRef | 1:CAS:528:DC%2BC3cXhtlKis7bI&md5=1129c410a05c925e04fe9ad65daf7197CAS | open url image1

[30]  E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana Environ. Chem. 2013, 10, 91.
Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonanaCrossRef | 1:CAS:528:DC%2BC3sXosVCkt7Y%3D&md5=1f9df0b815e62c3a075893cfbec69da3CAS | open url image1

[31]  K. J. Reimer, The methylation of arsenic in marine sediments Appl. Organomet. Chem. 1989, 3, 475.
The methylation of arsenic in marine sedimentsCrossRef | 1:CAS:528:DyaK3cXhsVGitro%3D&md5=8a2e4c3c5940111861f6699ccb175f24CAS | open url image1

[32]  D. Páez-Espino, J. Tamames, V. de Lorenzo, D. Canovas, Microbial responses to environmental arsenic Biometals 2009, 22, 117.
Microbial responses to environmental arsenicCrossRef | 19130261PubMed | open url image1

[33]  R. Bentley, T. G. Chasteen, Microbial methylation of metalloids: arsenic, antimony, and bismuth Microbiol. Mol. Biol. Rev. 2002, 66, 250.
Microbial methylation of metalloids: arsenic, antimony, and bismuthCrossRef | 1:CAS:528:DC%2BD38XltFSltrs%3D&md5=48186e246fd2c12054bdda68c760d523CAS | 12040126PubMed | open url image1

[34]  F. Azam, T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, F. Thingstad, The ecological role of water-column microbes in the sea Mar. Ecol. Prog. Ser. 1983, 10, 257.
The ecological role of water-column microbes in the seaCrossRef | open url image1

[35]  S. Kjelleberg, M. Hermansson, P. Marden, The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment Annu. Rev. Microbiol. 1987, 41, 25.
The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environmentCrossRef | 1:STN:280:DyaL1c%2FnsFynsQ%3D%3D&md5=dd80d636a03db1d065bcf0ba51b06bbdCAS | 3318670PubMed | open url image1

[36]  E. F. Delong, D. G. Franks, A. L. Alldredge, Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages Limnol. Oceanogr. 1993, 38, 924.
Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblagesCrossRef | open url image1

[37]  L. Gram, J. Melchiorsen, J. B. Bruhn, Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms Mar. Biotechnol. (NY) 2010, 12, 439.
Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organismsCrossRef | 1:CAS:528:DC%2BC3cXpt1OjsLk%3D&md5=0b8d954b6f359b0cb265e85d19173be8CAS | 19823914PubMed | open url image1

[38]  K. G. Boyd, D. R. Adams, J. G. Burgess, Antibacterial and repellent activities of marine bacteria associated with algal surfaces Biofouling 1999, 14, 227.
Antibacterial and repellent activities of marine bacteria associated with algal surfacesCrossRef | open url image1

[39]  H. Kirkman, G. Kendrick, Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review J. Appl. Phycol. 1997, 9, 311.
Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a reviewCrossRef | open url image1

[40]  E. Armstrong, L. Yan, K. G. Boyd, P. C. Wright, J. G. Burgess, The symbiotic role of marine microbes on living surfaces Hydrobiologia 2001, 461, 37.
The symbiotic role of marine microbes on living surfacesCrossRef | open url image1

[41]  M. Rieper-Kirchner, Microbial degradation of North Sea macroalgae: field and laboratory studies Bot. Mar. 1989, 32, 241.
Microbial degradation of North Sea macroalgae: field and laboratory studiesCrossRef | open url image1

[42]  G. C. Pellikaan, Laboratory experiments on eelgrass (Zostera marina L.) decomposition Neth. J. Sea Res. 1984, 18, 360.
Laboratory experiments on eelgrass (Zostera marina L.) decompositionCrossRef | 1:CAS:528:DyaL2MXlslGmsb8%3D&md5=30a7f48d1a4f4053fc3dd1e4961cabaeCAS | open url image1

[43]  J. M. Hill, C. D. McQuaid, Variability in the fractionation of stable isotopes during degradation of two intertidal red algae Estuar. Coast. Shelf Sci. 2009, 82, 397.
Variability in the fractionation of stable isotopes during degradation of two intertidal red algaeCrossRef | 1:CAS:528:DC%2BD1MXjvVWhs7w%3D&md5=71c3fdc726d511ae3c819e395ff9e76eCAS | open url image1

[44]  H. Higgins, D. Mackey, Role of Ecklonia radiata (C.Ag.) J.Agardh in determining trace metal availability in coastal waters. II. Trace metal speciation Mar. Freshwater Res. 1987, 38, 317.
Role of Ecklonia radiata (C.Ag.) J.Agardh in determining trace metal availability in coastal waters. II. Trace metal speciationCrossRef | 1:CAS:528:DyaL2sXlvVaqu7o%3D&md5=8e1f186eb05ba89a0a92772e8de3ca78CAS | open url image1

[45]  H. Urakawa, K. Kita-Tsukamoto, K. Ohwada, Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis Microbiology 1999, 145, 3305.
| 1:CAS:528:DyaK1MXnsVGns7s%3D&md5=d00f5f535c72d275743f6c4d61f3c517CAS | 10589740PubMed | open url image1

[46]  N. Velmurugan, D. Kalpana, J.-Y. Cho, G.-H. Lee, S.-H. Park, Y.-S. Lee, Phylogenetic analysis of culturable marine bacteria in sediments from South Korean Yellow Sea Microbiology 2011, 80, 261.
Phylogenetic analysis of culturable marine bacteria in sediments from South Korean Yellow SeaCrossRef | 1:CAS:528:DC%2BC3MXkvVyisL8%3D&md5=74df16b76cf28320148d92ecef633dd0CAS | open url image1

[47]  S. A. Gerlach, Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity Oecologia 1978, 33, 55.
Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivityCrossRef | open url image1

[48]  A. Bellgrove, M. N. Clayton, G. P. Quinn, An integrated study of the temporal and spatial variation in the supply of propagules, recruitment and assemblages of intertidal macroalgae on a wave-exposed rocky coast, Victoria, Australia J. Exp. Mar. Biol. Ecol. 2004, 310, 207.
An integrated study of the temporal and spatial variation in the supply of propagules, recruitment and assemblages of intertidal macroalgae on a wave-exposed rocky coast, Victoria, AustraliaCrossRef | open url image1

[49]  M. O. Andreae, Distribution and speciation of arsenic in natural waters and some marine algae Deep-Sea Res. 1978, 25, 391.
Distribution and speciation of arsenic in natural waters and some marine algaeCrossRef | 1:CAS:528:DyaE1cXks1Cqsb4%3D&md5=1d4f356c4b1a7717e90f56e4886440fcCAS | open url image1

[50]  G. E. Millward, L. Ebdon, A. P. Walton, Seasonality in estuarine sources of methylated arsenic Appl. Organomet. Chem. 1993, 7, 499.
Seasonality in estuarine sources of methylated arsenicCrossRef | 1:CAS:528:DyaK2cXosF2ntw%3D%3D&md5=6354f4520cca53096fc897cbe40dd3d7CAS | open url image1

[51]  G. E. Millward, H. J. Kitts, S. D. W. Comber, L. Ebdon, A. G. Howard, Methylated arsenic in the southern North Sea Estuar. Coast. Shelf Sci. 1996, 43, 1.
Methylated arsenic in the southern North SeaCrossRef | 1:CAS:528:DyaK28XksFeqtLY%3D&md5=498c6f2764a1b98c08242e20abf441b4CAS | open url image1



Supplementary MaterialSupplementary Material 485.8 KB Export Citation