Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

In situ characterisation of physicochemical state and concentration of nanoparticles in soil ecotoxicity studies using environmental scanning electron microscopy

Jani Tuoriniemi A , Stefan Gustafsson B , Eva Olsson B and Martin Hassellöv A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden.

B Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg, Sweden.

C Corresponding author. Email: martin.hassellöv@chem.gu.se

Environmental Chemistry 11(4) 367-376 https://doi.org/10.1071/EN13182
Submitted: 8 October 2013  Accepted: 14 April 2014   Published: 14 July 2014

Environmental context. Characterisation of nanoparticles in terms of number concentration and aggregation state is essential for interpreting data from toxicological tests. These parameters have never been measured in situ in tests carried out in soil matrices. Here, environmental scanning electron microscopy imaging is evaluated for particles in soil, and a method for determining the number concentrations by counting the particles in the images is developed.

Abstract. The interpretation of nanoparticle toxicity data in soils is currently impeded by the lack of methods capable of characterising particles in situ. To draw relevant and accurate conclusions it would be desirable to characterise particle sizes, agglomeration state and number concentrations. In this article, methodologies for imaging nanoparticles in soils are evaluated for conventional scanning electron microscopy (SEM) and environmental or variable pressure scanning electron microscopy (ESEM). A protocol for dispersing Au particles (~25 to ~450 nm) into soil without causing aggregation was developed. The number of particles observed per imaged area of soil correlated linearly with concentration. To determine the number of particles per volume of soil it was also necessary to know how deep in the sample the particles can be visualised. The depth was estimated by both using the Kanaya Okayama model, and spiking the soil with dispersions of known number concentration. These concentrations were determined with a range of methods to ensure their accuracy. Because larger particles can be detected deeper in the matrix, such a calibration should be performed over a range of particle sizes.


References

[1]  H. F. Krug, P. Wick, Nanotoxicology: an interdisciplinary challenge. Angew. Chem. 2011, 50, 1260.
Nanotoxicology: an interdisciplinary challenge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCmtL4%3D&md5=7c8d417ee7521d88f00d4406f44fdbe1CAS |

[2]  S. J. Klaine, A. A. Koelmans, N. Horne, S. Carley, R. D. Handy, L. Kapustka, B. Nowack, F. von der Kammer, Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 2012, 31, 3.
Paradigms to assess the environmental impact of manufactured nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfL&md5=d4cb74111fdb6a76fe2d7775f5fed067CAS | 22162122PubMed |

[3]  R. D. Handy, N. van den Brink, M. Chappell, M. Mühling, R. Behra, M. Dušinska, P. Simpson, J. Ahtiainen, A. N. Jha, J. Seiter, A. Bednar, A. Kennedy, T. F. Fernandes, M. Riediker, Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 2012, 21, 933.
Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFCjur4%3D&md5=7094b1115904429d04628a9edb95e3b2CAS | 22422174PubMed |

[4]  Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials, number 36 2012 (Environment Directorate, Organisation for Economic Co-operation and Development: Paris).

[5]  Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials. OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials, number 15 2009 (Environment Directorate, Organisation for Economic Co-operation and Development: Paris).

[6]  F. von der Kammer, Y. P. Lee Ferguson, P. A. Holden, A. Masion, K. K. R. Rogers, S. J. Klaine, A. A. Koelmans, N. Horne, J. M. Unrine, Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.
Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfF&md5=2c389671872187661fdedaf142521bfcCAS | 22021021PubMed |

[7]  W. A. Shoults-Wilson, B. C. Reinsch, O. V. Tsyusko, P. M. Bertsch, G. W. Lowry, J. M. Unrine, Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 2011, 75, 365.
Role of particle size and soil type in toxicity of silver nanoparticles to earthworms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFOlurY%3D&md5=e34fa31cb294534803b1b10143c51739CAS |

[8]  J. M. Unrine, O. V. Tsyusko, S. E. Hunyadi, J. D. Judy, P. M. Bertsch, Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J. Environ. Qual. 2010, 39, 1942.
Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKlu7zL&md5=1818e9ad7dbd879f808dae73c63d0bc0CAS | 21284291PubMed |

[9]  C. Levard, E. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
Environmental transformations of silver nanoparticles: impact on stability and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 22339502PubMed |

[10]  L. A. McDonnell, R. M. A. Heeren, Imaging mass spectrometry. Mass Spectrom. Rev. 2007, 26, 606.
Imaging mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1KltLk%3D&md5=297e989e3f635be7416b80a87c9a60b2CAS | 17471576PubMed |

[11]  Earthworm Reproduction Test (Eisenia fetida, Eisenia andrej). OECD guideline for the Testing of Chemicals 222, 2004 (Environment Directorate, Organisation for Economic Co-operation and Development: Paris).

[12]  J. J. Scott-Fordsmand, P. H. Krogh, J. R. Lead, Nanomaterials in ecotoxicology. Integr. Environ. Assess. Manag. 2008, 4, 126.
Nanomaterials in ecotoxicology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2FpvFaqug%3D%3D&md5=44a31b6918c2d11007c37dc3c0f6aa6eCAS | 17994909PubMed |

[13]  L. H. Heckmann, M. B. Hovgaard, D. S. Sutherland, H. A. Flemming Besenbacher, J. J. Scott-Fordsmand, Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm. Ecotoxicology 2011, 20, 226.
Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFCjtw%3D%3D&md5=285e536db56a9d0183bea82d6b63c3acCAS | 21120603PubMed |

[14]  NIST Reports of Investigation, NIST RM 8011and RM 8012 2007 (National Institute of Standards and Technology: Gaithersburg, MD, USA).

[15]  A. Malloy, B. Carr, NanoParticle tracking analysis – the Halo System. Part. Part. Syst. Char. 2006, 23, 197.
NanoParticle tracking analysis – the Halo System.Crossref | GoogleScholarGoogle Scholar |

[16]  J. A. Gallego-Urrea, J. Tuoriniemi, T. Pallander, M. Hassellöv, Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis. Environ. Chem. 2010, 7, 67.
Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLk%3D&md5=2cec745c1f8c32471f17dac1daba4ee5CAS |

[17]  Y. T. Yue, H. M. Li, Z. J. Ding, Monte Carlo simulation of secondary electron and backscattered electron images for a nanoparticle–matrix system. J. Phys. D Appl. Phys. 2005, 38, 1966.
Monte Carlo simulation of secondary electron and backscattered electron images for a nanoparticle–matrix system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSmtrg%3D&md5=eaeec411df2f21b82433b01bac43d1c6CAS |

[18]  R. Gauvin, P. Howington, D. Drouin, Quantification of spherical inclusions in the scanning electron microscope using Monte Carlo simulations. Scanning 1995, 17, 202.
Quantification of spherical inclusions in the scanning electron microscope using Monte Carlo simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFehtLs%3D&md5=3b73f38592d6fef287d6f937fbb59865CAS |

[19]  T. Sakaguchi, K. Ehara, Primary standard for the number concentration of liquid-borne particles in the 10 to 20 μm diameter range. Meas. Sci. Technol. 2011, 22, 024010.
Primary standard for the number concentration of liquid-borne particles in the 10 to 20 μm diameter range.Crossref | GoogleScholarGoogle Scholar |

[20]  J. A. Gallego-Urrea, J. Tuoriniemi, M. Hassellöv, Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. Trac-Trend. Anal. Chem. 2011, 30, 473.
Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFals7s%3D&md5=c885e1a1ce8a29e62df7828d81638282CAS |

[21]  D. Beltrami, D. Calestani, M. Maffini, M. Suman, B. Melegari, A. Zappettini, L. Zanotti, U. Casellato, M. Careri, A. Mangia, Development of a combined SEM and ICP-MS approach for the qualitative and quantitative analyses of metal microparticles and submicroparticles in food products. Anal. Bioanal. Chem. 2011, 401, 1401.
Development of a combined SEM and ICP-MS approach for the qualitative and quantitative analyses of metal microparticles and submicroparticles in food products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1ehsr4%3D&md5=32907debf3df5f11ee1a024e68e13d69CAS | 21660413PubMed |

[22]  K. Kanaya, S. Okayama, Penetration and energy-loss theory of electrons in solid targets. J. Phys. D Appl. Phys. 1972, 5, 43.
Penetration and energy-loss theory of electrons in solid targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xmtleksw%3D%3D&md5=5781c920d41d8eaa0b0b10f002640cd5CAS |

[23]  J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. Michael, Scanning Electron Microscopy and X-Ray Microanalysis 2003 (Springer: New York).

[24]  L. Korcakova, J. Hald, M. A. J. Somers, Quantification of Laves phase particle size in 9CrW steel. Mater. Charact. 2001, 47, 111.
Quantification of Laves phase particle size in 9CrW steel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFCrtLw%3D&md5=5986eaeefa832d10adc54438a30051f6CAS |

[25]  E. I. Rau, L. Reimer, Fundamental problems in imaging subsurface structures in scanning electron microscopy. Scanning 2001, 23, 235.
Fundamental problems in imaging subsurface structures in scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslWqurg%3D&md5=de7d7fb51370096aae5cdd62b5cfdf71CAS |

[26]  J. Liu, Contrast of highly dispersed metal nanoparticles in high-resolution secondary electron and backscattered electron images of supported metal catalysts. Microsc. Microanal. 2000, 6, 388.
| 1:CAS:528:DC%2BD3cXlsVyls7o%3D&md5=a0d080b409e0b436446a2e41a82d0e0bCAS | 10898824PubMed |

[27]  A. Hunt, D. L. Johnson, J. M. Watt, I. Thornton, Characterizing the sources of particulate lead in house dust by automated scanning electron microscopy. Environ. Sci. Technol. 1992, 26, 1513.
Characterizing the sources of particulate lead in house dust by automated scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFCrtLY%3D&md5=7d003c62e1297f49d930d179ec915a4eCAS |

[28]  P. S. Tourinho, C. A. M. Van Gestel, S. Lofts, C. Svendsen, K. Amadeu, M. V. M. Soares, S. Loureiro, Metal based nanoparticles in soil: fate behavior and effects on soil invertebrates. Environ. Toxicol. Chem. 2012, 31, 1679.
Metal based nanoparticles in soil: fate behavior and effects on soil invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GmtLfE&md5=12e72f628949c7fbc61224037e2ed2c2CAS | 22573562PubMed |

[29]  S. Gottschalk, T. Y. Sun, B. Nowac, Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 2013, 181, 287.
Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSlsrfP&md5=7be267556cba6b63f2cffd78eb64df51CAS |