Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Speciation mapping of environmental samples using XANES imaging

Barbara E. Etschmann A B , Erica Donner C D , Joël Brugger E , Daryl L. Howard F , Martin D. de Jonge F , David Paterson F , Ravi Naidu C D , Kirk G. Scheckel G , Chris G. Ryan H and Enzo Lombi C I

A Mineralogy, South Australian Museum, North Terrace, Adelaide, GPO Box 234, SA 5001, Australia.

B School of Chemical Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

C Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia.

D CRC CARE, PO Box 486, Salisbury, SA 5106, Australia.

E School of Geosciences, Monash University, Building 28, Clayton, Vic. 3800, Australia

F Australian Synchrotron, 800 Blackburn Road, Clayton, Vic. 3168, Australia

G US Environmental Protection Agency, Office of Research and Development, 5995 Center Hill Avenue, Cincinnati, OH 45224-1702, USA.

H Earth Science and Resource Engineering, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bayview Avenue, Clayton, Vic. 3168, Australia.

I Corresponding author: enzo.lombi@unisa.edu.au

Environmental Chemistry 11(3) 341-350 http://dx.doi.org/10.1071/EN13189
Submitted: 15 October 2013  Accepted: 28 February 2014   Published: 5 June 2014

Environmental context. Recently developed fast fluorescence detectors have opened the way to the development of element speciation mapping, i.e. X-ray absorption near edge spectroscopy (XANES) imaging, of environmental samples. This technique is potentially very informative but is also highly data intensive. Here, we used XANES imaging to explore the distribution of Cu species in biosolid materials, destined for agricultural use, as this is of importance in relation to the bioavailability and potential toxicity of this metal.

Abstract. Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such multispectral datasets can be analysed in order to provide further insights into the distribution of Cu species in fresh and stockpiled biosolids. The approach demonstrated uses Principal Components Analysis to extract the ‘significant’ spectral information from the XANES maps, followed by cluster analysis to locate regions of contrasting spectral signatures. Following this model-free analysis, pixel-by-pixel linear combination fits are used to provide a direct link between bulk and imaging XANES spectroscopy. The results indicate that both the speciation and distribution of Cu species are significantly affected by ageing. The majority of heterogeneously distributed micrometre-sized Cu sulfide particles present in fresh biosolids disappear during the oxidative stockpiling process. In aged biosolids most of the Cu is homogeneously redistributed on organic matter suggesting that Cu mobility is temporarily increased during this redistribution process. This manuscript demonstrates how large XANES imaging datasets could be analysed and used to gain a deep understanding of metal speciation in environmental samples.

Additional keywords: agriculture, biosolids, copper.


References

[1]  E. Lombi, J. Susini, Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 2009, 320, 1.
Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives.CrossRef | 1:CAS:528:DC%2BD1MXmvFGjtLo%3D&md5=620f8be30a63879688ab9f76568d105eCAS | open url image1

[2]  A. Manceau, M. C. Boisset, G. Sarret, R. L. Hazemann, M. Mench, P. Cambier, R. Prost, Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ. Sci. Technol. 1996, 30, 1540.
Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy.CrossRef | 1:CAS:528:DyaK28XhvVKgt70%3D&md5=b729fe61c1c989e1633c56e70b4bc711CAS | open url image1

[3]  J. Brugger, B. Etschmann, M. Pownceby, W. Liu, P. Grundler, D. Brewe, Tracking the chemistry of ancient fluids: oxidation state of europium in hydrothermal scheelite. Chem. Geol. 2008, in press.
Tracking the chemistry of ancient fluids: oxidation state of europium in hydrothermal scheelite.CrossRef | open url image1

[4]  S. Behrens, A. Kappler, M. Obst, Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environ. Microbiol. 2012, 14, 2851.
Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM).CrossRef | 1:CAS:528:DC%2BC38XhsFGqt7bL&md5=f956ffc94e2bfc2d28d0e9eed5b8d041CAS | 22409443PubMed | open url image1

[5]  M. Muñoz, V. De Andrade, O. Vidal, E. Lewin, S. Pascarelli, J. Susini, Redox and speciation micromapping using dispersive X-ray absorption spectroscopy: application to iron chlorite mineral of a metamorphic rock thin section. Geochem. Geophys. Geosyst. 2006, 7, Q11020.
Redox and speciation micromapping using dispersive X-ray absorption spectroscopy: application to iron chlorite mineral of a metamorphic rock thin section.CrossRef | open url image1

[6]  G. Martínez-Criado, A. Somogyi, A. Homs, R. Tucoulou, J. Susini, Micro-X-ray absorption near-edge structure imaging for detecting metallic Mn in GaN. Appl. Phys. Lett. 2005, 87, 061913.
Micro-X-ray absorption near-edge structure imaging for detecting metallic Mn in GaN.CrossRef | open url image1

[7]  M. A. Denecke, A. Somogyi, K. Janssens, R. Simon, K. Dardenne, U. Noseck, Microanalysis (micro-XRF, micro-XANES, and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation. Microsc. Microanal. 2007, 13, 165.
Microanalysis (micro-XRF, micro-XANES, and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation.CrossRef | 1:CAS:528:DC%2BD2sXmsl2js7o%3D&md5=5b78dc39f6536685aa3519daff9355f2CAS | 17490498PubMed | open url image1

[8]  L. E. Mayhew, S. M. Webb, A. S. Templeton, Microscale imaging and identification of Fe speciation and distribution during fluid–mineral reactions under highly reducing conditions. Environ. Sci. Technol. 2011, 45, 4468.
Microscale imaging and identification of Fe speciation and distribution during fluid–mineral reactions under highly reducing conditions.CrossRef | 1:CAS:528:DC%2BC3MXltFajtLw%3D&md5=42ba32ddf8efc3df136ad89a2cee0811CAS | 21517061PubMed | open url image1

[9]  C. G. Ryan, D. P. Siddons, G. Moorhead, R. Kirkham, G. De Geronimo, B. E. Etschmann, A. Dragone, P. A. Dunn, A. Kuczewski, P. Davey, M. Jensen, J. M. Ablett, J. Kuczewski, R. Hough, D. Patersons, High-throughput X-ray fluorescence imaging using a massively parallel detector array, integrated scanning and real-time spectral deconvolution. J. Phys. Conf. Ser. 2009, 186, 012013.
High-throughput X-ray fluorescence imaging using a massively parallel detector array, integrated scanning and real-time spectral deconvolution.CrossRef | open url image1

[10]  E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, D. Paterson, Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors. Anal. Bioanal. Chem. 2011, 400, 1637.
Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.CrossRef | 1:CAS:528:DC%2BC3MXjtVOns7o%3D&md5=249489e3082ba79690ce1ead8a45496aCAS | 21390564PubMed | open url image1

[11]  C. G. Ryan, D. P. Siddons, R. Kirkham, Z. Y. Li, M. D. de Jonge, D. J. Paterson, A. Kuczewski, D. L. Howard, P. A. Dunn, G. Falkenberg, U. Boesenberg, G. De Geronimo, L. A. Fisher, A. Halfpenny, M. J. Lintern, E. Lombi, K. A. Dyl, M. Jensen, G. F. Moorhead, J. S. Cleverley, R. M. Hough, B. Godel, S. J. Barnes, S. A. James, K. M. Spiers, M. Alfeld, G. Wellenreuther, Z. Vukmanovic, S. Borg, MAIA X-ray fluorescence imaging: capturing detail in complex natural samples. J. Phys. Conf. Ser. 2014, 499, 012002.
MAIA X-ray fluorescence imaging: capturing detail in complex natural samples.CrossRef | open url image1

[12]  B. E. Etschmann, C. G. Ryan, J. Brugger, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, G. De Geronimo, A. Kuczewski, P. Dunn, D. Paterson, M. D. de Jonge, D. L. Howard, P. Davey, M. Jensen, Reduced As components in highly oxidized environments: evidence from full spectral XANES imaging using the MAIA massively parallel detector. Am. Mineral. 2010, 95, 884.
Reduced As components in highly oxidized environments: evidence from full spectral XANES imaging using the MAIA massively parallel detector.CrossRef | 1:CAS:528:DC%2BC3cXmslKksLg%3D&md5=04d5b580c649f0654432b1f7518f3caaCAS | open url image1

[13]  E. Donner, D. L. Howard, M. D. de Jonge, D. Paterson, M. H. Cheah, R. Naidu, E. Lombi, X-Ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids. Environ. Sci. Technol. 2011, 45, 7249.
X-Ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids.CrossRef | 1:CAS:528:DC%2BC3MXhtVWntrfI&md5=a749b922f0fb1a84fd75ec3a31aed6b8CAS | 21793501PubMed | open url image1

[14]  N. T. Basta, J. A. Ryan, R. L. Chaney, Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J. Environ. Qual. 2005, 34, 49.
| 1:CAS:528:DC%2BD2MXotlSjsw%3D%3D&md5=822f88f11663ce9dd1b7cd95bb8a87ccCAS | 15647534PubMed | open url image1

[15]  E. Smolders, K. Oorts, P. van Sprang, I. Schoeters, C. R. Janssen, S. P. McGrath, M. J. McLaughlin, Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ. Toxicol. Chem. 2009, 28, 1633.
Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards.CrossRef | 1:CAS:528:DC%2BD1MXovFertr4%3D&md5=8ca9c07aa1948537f7ea565911209346CAS | 19301943PubMed | open url image1

[16]  M. B. McBride, Toxic metal accumulation from agricultural use of sludge – are USEPA regulations protective? J. Environ. Qual. 1995, 24, 5.
Toxic metal accumulation from agricultural use of sludge – are USEPA regulations protective?CrossRef | 1:CAS:528:DyaK2MXjtVeqt70%3D&md5=e4c5f9220084e1b58925a722c37ff7ceCAS | open url image1

[17]  S. L. Brown, R. L. Chaney, J. S. Angle, J. A. Ryan, The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils. J. Environ. Qual. 1998, 27, 1071.
The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils.CrossRef | 1:CAS:528:DyaK1cXmtl2js7s%3D&md5=d69b9039654abbe74a0b08615f5bbf71CAS | open url image1

[18]  A. Chaudri, S. McGrath, P. Gibbs, B. Chambers, C. Carlton-Smith, A. Godley, J. Bacon, C. Campbell, M. Aitken, Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chemosphere 2007, 66, 1415.
Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts.CrossRef | 1:CAS:528:DC%2BD28XhtlSiu7jF&md5=ac5eda94f67b24a9308022453d74a5bbCAS | 17109920PubMed | open url image1

[19]  D. A. Heemsbergen, M. J. McLaughlin, M. Whatmuff, M. S. Warne, K. Broos, M. Bell, D. Nash, G. Barry, D. Pritchard, N. Penney, Bioavailability of zinc and copper in biosolids compared to their soluble salts. Environ. Pollut. 2010, 158, 1907.
Bioavailability of zinc and copper in biosolids compared to their soluble salts.CrossRef | 1:CAS:528:DC%2BC3cXmt1Kmt70%3D&md5=0c10e03160e7e63910655cb327fc8835CAS | 19932536PubMed | open url image1

[20]  U. Kukier, R. L. Chaney, J. A. Ryan, W. L. Daniels, R. H. Dowdy, T. C. Granato, Phytoavailability of cadmium in long-term biosolids-amended soils. J. Environ. Qual. 2010, 39, 519.
Phytoavailability of cadmium in long-term biosolids-amended soils.CrossRef | 1:CAS:528:DC%2BC3cXjsFCquro%3D&md5=48d59c2b87017de32492ea66ea28617cCAS | 20176825PubMed | open url image1

[21]  E. Smolders, K. Oorts, E. Lombi, I. Schoeters, Y. B. Ma, S. Zrna, M. J. McLaughlin, The availability of copper in soils historically amended with sewage sludge, manure, and compost. J. Environ. Qual. 2012, 41, 506.
The availability of copper in soils historically amended with sewage sludge, manure, and compost.CrossRef | 1:CAS:528:DC%2BC38Xkt1yluro%3D&md5=dcc3a36d86f6dc6924dce7e0a87d63dcCAS | 22370413PubMed | open url image1

[22]  E. Lombi, R. Sekine, E. Donner, Synchrotron biogeochemistry: piecing together the ever increasing details of the large puzzle. Environ. Chem. 2014, 11, 1.
Synchrotron biogeochemistry: piecing together the ever increasing details of the large puzzle.CrossRef | 1:CAS:528:DC%2BC2cXjtFSiur4%3D&md5=6316d93dc5684019573d907050faeb68CAS | open url image1

[23]  M. Lerotic, C. Jacobsen, T. Schafer, S. Vogt, Cluster analysis of soft X-ray spectromicroscopy data. Ultramicroscopy 2004, 100, 35.
Cluster analysis of soft X-ray spectromicroscopy data.CrossRef | 1:CAS:528:DC%2BD2cXltF2lsr4%3D&md5=09fe2c212ea09a582d891c8bcfc581fcCAS | 15219691PubMed | open url image1

[24]  M. Lerotic, C. Jacobsen, J. B. Gillow, A. J. Francis, S. Wirick, S. Vogt, J. Maser, Cluster analysis in soft X-ray spectromicroscopy: finding the patterns in complex specimens. J. Electron Spectrosc. Relat. Phenom. 2005, 144–147, 1137.
Cluster analysis in soft X-ray spectromicroscopy: finding the patterns in complex specimens.CrossRef | open url image1

[25]  D. Paterson, M. D. de Jonge, D. L. Howard, W. Lewis, J. McKinlay, A. Starritt, M. Kusel, C. G. Ryan, R. Kirkham, G. Moorhead, D. P. Siddons, The X-ray fluorescence microscopy beamline at the Australian synchrotron. AIP Conf. Proc. 2011, 1365, 219.
The X-ray fluorescence microscopy beamline at the Australian synchrotron.CrossRef | open url image1

[26]  R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Kuesel, J. McKinlay, The MAIA spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing. AIP Conf. Proc. 2010, 1234, 240.
The MAIA spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing.CrossRef | 1:CAS:528:DC%2BC3cXos1CksLk%3D&md5=f2e8794416c63da0908c567b0df60d42CAS | open url image1

[27]  C. G. Ryan, Quantitative trace element imaging using PIXE and the nuclear microprobe. Int. J. Imaging Syst. Technol. 2000, 11, 219.
Quantitative trace element imaging using PIXE and the nuclear microprobe.CrossRef | open url image1

[28]  C. G. Ryan, D. P. Siddons, R. Kirkham, P. A. Dunn, A. Kuczewski, G. Moorhead, G. De Geronimo, D. J. Paterson, M. D. de Jonge, R. M. Hough, M. J. Lintern, D. L. Howard, P. Kappen, J. Cleverley, The new MAIA detector system: methods for high definition trace element imaging of natural material. AIP Conf. Proc. 2010, 1221, 9.
The new MAIA detector system: methods for high definition trace element imaging of natural material.CrossRef | 1:CAS:528:DC%2BC3cXkvFeju7g%3D&md5=75b2ccca697abbdc5ebcdb39b6253f49CAS | open url image1

[29]  H. Ebel, R. Svagera, M. F. Ebel, A. Shaltout, J. H. Hubbell, Numerical description of photoelectric absorption coefficients for fundamental parameter programs. XRay Spectrom. 2003, 32, 442.
Numerical description of photoelectric absorption coefficients for fundamental parameter programs.CrossRef | 1:CAS:528:DC%2BD3sXptVyksrk%3D&md5=36271124cc31a53975551c4c016c8648CAS | open url image1

[30]  W. T. Elam, B. D. Ravel, J. R. Sieber, A new atomic database for X-ray spectroscopic calculations. Radiat. Phys. Chem. 2002, 63, 121.
A new atomic database for X-ray spectroscopic calculations.CrossRef | 1:CAS:528:DC%2BD3MXptFSrsrY%3D&md5=d03cfbabfb9d04cef7f0006fb8fb3940CAS | open url image1

[31]  C. G. Ryan, E. van Achterbergh, D. N. Jamieson, Advances in dynamic analysis PIXE imaging: correction for spatial variation of pile-up components. Nucl. Instrum. Methods Phys. Res. B 2005, 231, 162.
Advances in dynamic analysis PIXE imaging: correction for spatial variation of pile-up components.CrossRef | 1:CAS:528:DC%2BD2MXktFWis74%3D&md5=0bba4bd3befb7b6484d061598ef9e7daCAS | open url image1

[32]  C. G. Ryan, B. E. Etschmann, S. Vogt, J. Maser, C. Harland, E. van Achterbergh, D. Legnini, Nuclear microprobe – synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SXRF. Nucl. Instrum. Meth. B 2005, 231, 183.
Nuclear microprobe – synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SXRF.CrossRef | 1:CAS:528:DC%2BD2MXktFWis70%3D&md5=76660debf4ab9a7bd079be494f38985dCAS | open url image1

[33]  P. R. Bevington, Least-squares fit to an arbitrary function, in Data Reduction and Error Analysis for the Physical Sciences 1969, pp. 204–246 (McGraw-Hill Book Company: New York).

[34]  N. R. Draper, H. Smith, An introduction to non-linear estimation, in Applied Regression Analysis 1966, pp. 263–307 (Wiley: New York).

[35]  M. D. Abramoff, P. J. Magalhaes, S. J. Ram, Image processing with ImageJ. Biophotonics Int. 2004, 11, 36. open url image1

[36]  C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671.
NIH Image to ImageJ: 25 years of image analysis.CrossRef | 1:CAS:528:DC%2BC38XhtVKntb7P&md5=888169d431f644041ae9945173cb294dCAS | 22930834PubMed | open url image1

[37]  B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.CrossRef | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=38393bb2fbbd8e2e2db909c600fda025CAS | 15968136PubMed | open url image1

[38]  T. A. Kirpichtchikova, A. Manceau, L. Spadini, F. Panfili, M. A. Marcus, T. Jacquet, Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim. Cosmochim. Acta 2006, 70, 2163.
Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling.CrossRef | 1:CAS:528:DC%2BD28Xjslyht7k%3D&md5=b2a83c83511b2db0ccc824530a980767CAS | open url image1

[39]  B. Kim, C. S. Park, M. Murayama, M. F. Hochella, Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 2010, 44, 7509.
Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products.CrossRef | 1:CAS:528:DC%2BC3cXhtFGhtr%2FL&md5=65fbaa4f818111971bc08296c239c594CAS | 20839838PubMed | open url image1

[40]  S. Kelly, D. Hesterberg, B. Ravel, Analysis of soils and minerals using X-ray absorption spectroscopy, in Methods of Soil Analysis, Part 5. Mineralogical Methods 2008, Chapt. 14, pp. 387–463 (Soil Sciences Society of America: Madison, WI).

[41]  G. M. Hettiarachchi, J. A. Ryan, R. L. Chaney, C. M. La Fleur, Sorption and desorption of cadmium by different fractions of biosolids-amended soils. J. Environ. Qual. 2003, 32, 1684.
Sorption and desorption of cadmium by different fractions of biosolids-amended soils.CrossRef | 1:CAS:528:DC%2BD3sXnsFKmtbs%3D&md5=ce1845aa7983e4a970d5777a5488fa78CAS | 14535309PubMed | open url image1

[42]  E. Donner, C. G. Ryan, D. L. Howard, B. Zarcinas, K. G. Scheckel, S. P. McGrath, M. D. de Jonge, D. Paterson, R. Naidu, E. Lombi, A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids. Environ. Pollut. 2012, 166, 57.
A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids.CrossRef | 1:CAS:528:DC%2BC38Xms12gu70%3D&md5=6326c7841ca6a970d53c0ad0b5258abcCAS | 22475551PubMed | open url image1

[43]  E. Donner, G. Brunetti, B. Zarcinas, P. Harris, E. Tavakkoli, R. Naidu, E. Lombi, Use of chemical amendments for immobilisation of metals in anarobically digested biosolids. Environ. Sci. Technol. 2013, 47, 11157.
Use of chemical amendments for immobilisation of metals in anarobically digested biosolids.CrossRef | 1:CAS:528:DC%2BC3sXhtlektr%2FF&md5=b90c999e132f1c476a6372295913b7edCAS | 23981056PubMed | open url image1

[44]  R. Kaegi, A. Voegelin, B. Sinnet, S. Zuleeg, H. Hagendorfer, M. Burkhardt, H. Siegrist, Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 2011, 45, 3902.
Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant.CrossRef | 1:CAS:528:DC%2BC3MXkt1Cqtbc%3D&md5=735cc26c16080c1eca1bd0df25093c6dCAS | 21466186PubMed | open url image1

[45]  E. Lombi, E. Donner, E. Tavakkoli, T. W. Turney, R. Naidu, B. W. Miller, K. G. Scheckel, Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol. 2012, 46, 9089.
Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge.CrossRef | 1:CAS:528:DC%2BC38XhtVKlt7%2FK&md5=a8ff12f656878e0da34540a48c78cc9fCAS | 22816872PubMed | open url image1

[46]  M. Rivers, 4,000 Spectra or 4,000,000 ROIs per second: EPICS support for high-speed digital X-ray spectroscopy with the XIA xMap, in XRM 2010, 10th International Conference on X-ray Microscopy, 15–20 August 2010, Chicago, IL 2010 (Argonne National Laboratory: Argonne, IL, USA). [See also http://cars9.uchicago.edu/software/epics/dxp.html for DXP 3.0 release.]

[47]  P. A. B. Scoullar, C. C. McLean, R. J. Evans, Real time pulse pile-up recovery in a high throughput digital pulse processor. AIP Conf. Proc. 2011, 1412, 270.
Real time pulse pile-up recovery in a high throughput digital pulse processor.CrossRef | open url image1



Supplementary MaterialSupplementary Material (828 KB) Export Citation Cited By (7)