Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Nanoparticle core properties affect attachment of macromolecule-coated nanoparticles to silica surfaces

Ernest M. Hotze A B , Stacey M. Louie A B , Shihong Lin A C , Mark R. Wiesner A C and Gregory V. Lowry A B D

A Center for Environmental Implications of NanoTechnology (CEINT), PO Box 90287, Duke University, Durham, NC 27708-0287, USA.

B Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

C Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Box 90287, Durham, NC 27708-0287, USA.

D Corresponding author. Email: glowry@andrew.cmu.edu

Environmental Chemistry 11(3) 257-267 http://dx.doi.org/10.1071/EN13191
Submitted: 22 October 2013  Accepted: 15 February 2014   Published: 5 June 2014

Environmental context. The increasing use of engineered nanoparticles has led to concerns over potential exposure to these novel materials. Predictions of nanoparticle transport in the environment and exposure risks could be simplified if all nanoparticles showed similar deposition behaviour when coated with macromolecules used in production or encountered in the environment. We show, however, that each nanoparticle in this study exhibited distinct deposition behaviour even when coated, and hence risk assessments may need to be specifically tailored to each type of nanoparticle.

Abstract. Transport, toxicity, and therefore risks of engineered nanoparticles (ENPs) are unquestionably tied to interactions between those particles and surfaces. In this study, we proposed the simple and untested hypothesis that coating type can be the predominant factor affecting attachment of ENPs to silica surfaces across a range of ENP and coating types, effectively masking the contribution of the particle core to deposition behaviour. To test this hypothesis, TiO2, Ag0 and C60 nanoparticles with either no coating or one of three types of adsorbed macromolecules (poly(acrylic acid), humic acid and bovine serum albumin) were prepared. The particle size and adsorbed layer thicknesses were characterised using dynamic light scattering and soft particle electrokinetic modelling. The attachment efficiencies of the nanoparticles to silica surfaces (glass beads) were measured in column experiments and compared with predictions from a semi-empirical correlation between attachment efficiency and coated particle properties that included particle size and layer thickness. For the nanoparticles and adsorbed macromolecules in this study, the attachment efficiencies could not be explained solely by the coating type. Therefore, the hypothesis that adsorbed macromolecules will mask the particle core and control attachment was disproved, and information on the properties of both the nanoparticle surface (e.g. charge and hydrophobicity) and adsorbed macromolecule (e.g. molecular weight, charge density extended layer thickness) will be required to explain or predict interactions of coated nanoparticles with surfaces in the environment.


References

[1]  M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology: Applications and Impacts of Nanomaterials 2007 (McGraw-Hill: New York).

[2]  M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella, R. T. Di Giulio, E. Casman, E. S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458.
Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials.CrossRef | 1:CAS:528:DC%2BD1MXptFCiur0%3D&md5=0886f221938034ce9537d754f6700ef7CAS | 19764202PubMed | open url image1

[3]  E. M. Hotze, T. Phenrat, G. V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909.
Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment.CrossRef | 1:CAS:528:DC%2BC3cXhsVKlu7zI&md5=920b07f4a5df0e8b01da1337ad4a5016CAS | 21284288PubMed | open url image1

[4]  A. R. Petosa, D. P. Jaisi, I. R. Quevedo, M. Elimelech, N. Tufenkji, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532.
Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions.CrossRef | 1:CAS:528:DC%2BC3cXpvVSgt7g%3D&md5=bba98cf747b566481721a2b580709409CAS | 20687602PubMed | open url image1

[5]  A. Tiraferri, R. Sethi, Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J. Nanopart. Res. 2009, 11, 635.
Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum.CrossRef | 1:CAS:528:DC%2BD1MXisVGhtLo%3D&md5=05c39ff9d0917f5ed41d22bd59417ee9CAS | open url image1

[6]  F. He, M. Zhang, T. W. Qian, D. Y. Zhao, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. J. Colloid Interface Sci. 2009, 334, 96.
Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling.CrossRef | 1:CAS:528:DC%2BD1MXls1egtbY%3D&md5=976fa4b251fba200420f8b739f600d35CAS | 19383562PubMed | open url image1

[7]  J. E. Song, T. Phenrat, S. Marinakos, Y. Xiao, J. Liu, M. R. Wiesner, R. D. Tilton, G. V. Lowry, Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ. Sci. Technol. 2011, 45, 5988.
Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces.CrossRef | 1:CAS:528:DC%2BC3MXnvVKitbk%3D&md5=c28f3fada5a0849680f9bc04308663b3CAS | 21692483PubMed | open url image1

[8]  M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101.
Emerging applications of stimuli-responsive polymer materials.CrossRef | open url image1

[9]  D. Walczyk, F. B. Bombelli, M. P. Monopoli, I. Lynch, K. A. Dawson, What the cell ‘sees’ in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761.
What the cell ‘sees’ in bionanoscience.CrossRef | 1:CAS:528:DC%2BC3cXktFeks78%3D&md5=c890ecc0ce60fb509647ed26cf3cd4efCAS | 20356039PubMed | open url image1

[10]  Y. G. Wang, Y. S. Li, J. D. Fortner, J. B. Hughes, L. M. Abriola, K. D. Pennell, Transport and retention of nanoscale C60 aggregates in water-saturated porous media. Environ. Sci. Technol. 2008, 42, 3588.
Transport and retention of nanoscale C60 aggregates in water-saturated porous media.CrossRef | 1:CAS:528:DC%2BD1cXksFaku7c%3D&md5=3d1e62742169dd69c7dec95a0dfdc02fCAS | open url image1

[11]  Y. S. Li, Y. G. Wang, K. D. Pennell, L. M. Abriola, Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol. 2008, 42, 7174.
Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions.CrossRef | 1:CAS:528:DC%2BD1cXhtVaru7jO&md5=19b5e7c23c8961127c548e6e1df1d7baCAS | open url image1

[12]  B. Espinasse, E. M. Hotze, M. R. Wiesner, Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method. Environ. Sci. Technol. 2007, 41, 7396.
Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method.CrossRef | 1:CAS:528:DC%2BD2sXhtFagtbzI&md5=cc166db928afe51a6ece6fcecbd6c121CAS | 18044517PubMed | open url image1

[13]  S. H. Lin, Y. W. Cheng, Y. Bobcombe, K. L. Jones, J. Liu, M. R. Wiesner, Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis. Environ. Sci. Technol. 2011, 45, 5209.
Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis.CrossRef | 1:CAS:528:DC%2BC3MXmtFCnsLY%3D&md5=df62512d9038f22a1eaa6b1c20bad59bCAS | open url image1

[14]  I. G. Godinez, C. J. G. Darnault, Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res. 2011, 45, 839.
Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.CrossRef | 1:CAS:528:DC%2BC3cXhs1Sqsr3L&md5=88063fef48eed3419d24730c0c572c3eCAS | 20947120PubMed | open url image1

[15]  N. Solovitch, J. Labille, J. Rose, P. Chaurand, D. Borschneck, M. R. Wiesner, J. Y. Bottero, Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 2010, 44, 4897.
Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.CrossRef | 1:CAS:528:DC%2BC3cXmvFKmu7s%3D&md5=bccf704c96f252cc366f2e7c057b87e3CAS | 20524647PubMed | open url image1

[16]  X. Y. Liu, M. Wazne, T. M. Chou, R. Xiao, S. Y. Xu, Influence of Ca2+ and Suwannee River Humic Acid on aggregation of silicon nanoparticles in aqueous media. Water Res. 2011, 45, 105.
Influence of Ca2+ and Suwannee River Humic Acid on aggregation of silicon nanoparticles in aqueous media.CrossRef | 1:CAS:528:DC%2BC3cXhsFSqtbvO&md5=5a0d5c19bb9cd3bf6a0370a7ba1692caCAS | open url image1

[17]  B. Uyusur, C. J. G. Darnault, P. T. Snee, E. Koken, A. R. Jacobson, R. R. Wells, Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. J. Contam. Hydrol. 2010, 118, 184.
Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone.CrossRef | 1:CAS:528:DC%2BC3cXhsFWjsLnM&md5=e2550be4590c65844c3afd73fa8067faCAS | 21056511PubMed | open url image1

[18]  X. Y. Liu, D. M. O’Carroll, E. J. Petersen, Q. G. Huang, C. L. Anderson, Mobility of multiwalled carbon nanotubes in porous media. Environ. Sci. Technol. 2009, 43, 8153.
Mobility of multiwalled carbon nanotubes in porous media.CrossRef | 1:CAS:528:DC%2BD1MXht1amtrbM&md5=7020d9a80a415f5e72d18109b63fbc8dCAS | open url image1

[19]  Z. Li, E. Sahle-Demessie, A. A. Hassan, G. A. Sorial, Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res. 2011, 45, 4409.
Transport and deposition of CeO2 nanoparticles in water-saturated porous media.CrossRef | 1:CAS:528:DC%2BC3MXpt1altLw%3D&md5=abee7d69591d96956a2dd6f6d00bc106CAS | 21708395PubMed | open url image1

[20]  K. M. Sirk, N. B. Saleh, T. Phenrat, H. J. Kim, B. Dufour, J. Ok, P. L. Golas, K. Matyjaszewski, G. V. Lowry, R. D. Tilton, Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ. Sci. Technol. 2009, 43, 3803.
Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models.CrossRef | 1:CAS:528:DC%2BD1MXktF2gsL8%3D&md5=a0f3ae2813093c3cc99e226e8cbbcf96CAS | 19544891PubMed | open url image1

[21]  X. J. Jiang, M. P. Tong, H. Y. Li, K. Yang, Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces. J. Colloid Interface Sci. 2010, 350, 427.
Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces.CrossRef | 1:CAS:528:DC%2BC3cXhtVGisbfJ&md5=85a5c1785d63e0dc9f48125016bdea8bCAS | open url image1

[22]  P. Yi, K. L. Chen, Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir 2011, 27, 3588.
Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes.CrossRef | 1:CAS:528:DC%2BC3MXisFWltbY%3D&md5=5044c7a65c74da0fa4bbab73ac4f18cfCAS | 21355574PubMed | open url image1

[23]  K. L. Chen, M. Elimelech, Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ. Sci. Technol. 2009, 43, 7270.
Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties.CrossRef | 1:CAS:528:DC%2BD1MXltFOltr0%3D&md5=b419125a37caf08d915a4ef2bca853f3CAS | 19848133PubMed | open url image1

[24]  B. Smith, K. Wepasnick, K. E. Schrote, A. H. Bertele, W. P. Ball, C. O’Melia, D. H. Fairbrother, Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environ. Sci. Technol. 2009, 43, 819.
Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes.CrossRef | 1:CAS:528:DC%2BD1cXhsFCltL7M&md5=91bd3e1d81b0adde5759ca3da6c16db4CAS | 19245021PubMed | open url image1

[25]  T. Phenrat, N. Saleh, K. Sirk, H. J. Kim, R. D. Tilton, G. V. Lowry, Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 2008, 10, 795.
Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation.CrossRef | 1:CAS:528:DC%2BD1cXkvFajtrg%3D&md5=5e68b8f18322d154f76fd378da4f571cCAS | open url image1

[26]  S. H. Brewer, W. R. Glomm, M. C. Johnson, M. K. Knag, S. Franzen, Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 2005, 21, 9303.
Probing BSA binding to citrate-coated gold nanoparticles and surfaces.CrossRef | 1:CAS:528:DC%2BD2MXot1Cmu7w%3D&md5=e11a630c67e2fb5567541e48178cc622CAS | 16171365PubMed | open url image1

[27]  S. M. Louie, R. D. Tilton, G. V. Lowry, Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ. Sci. Technol. 2013, 47, 4245.
Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation.CrossRef | 1:CAS:528:DC%2BC3sXltFCjtb8%3D&md5=15bb87cd98587338b45001fe740f319eCAS | 23550560PubMed | open url image1

[28]  I. Chowdhury, D. M. Cwiertny, S. L. Walker, Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ. Sci. Technol. 2012, 46, 6968.
Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria.CrossRef | 1:CAS:528:DC%2BC38Xks1OmsLk%3D&md5=46cda7c713b7801683c21774d57fe1caCAS | 22455349PubMed | open url image1

[29]  X. Y. Liu, M. Wazne, Y. Han, C. Christodoulatos, K. L. Jasinkiewicz, Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes. J. Colloid Interface Sci. 2010, 348, 101.
Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes.CrossRef | 1:CAS:528:DC%2BC3cXmvFOjt7c%3D&md5=a5f0c132f0eadfb9f92466b9c58bb967CAS | open url image1

[30]  A. Hitchman, G. H. S. Smith, Y. Ju-Nam, M. Sterling, J. R. Lead, The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 2013, 90, 410.
The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles.CrossRef | 1:CAS:528:DC%2BC38Xhtlamu7jK&md5=2dc508887987b5d1dd2586fed33417edCAS | 22967928PubMed | open url image1

[31]  G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
Transformations of nanomaterials in the environment.CrossRef | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=ffe75c0f5fd3c0eb997ff49828357fb0CAS | 22582927PubMed | open url image1

[32]  D. P. Stankus, S. E. Lohse, J. E. Hutchison, J. A. Nason, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ. Sci. Technol. 2011, 45, 3238.
Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.CrossRef | 1:CAS:528:DC%2BC3cXhsFOqtr%2FF&md5=014ab5a691d217b2dc68d683d4946eedCAS | 21162562PubMed | open url image1

[33]  B. Smith, J. Yang, J. L. Bitter, W. P. Ball, D. H. Fairbrother, Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter. Environ. Sci. Technol. 2012, 46, 12 839.
Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter.CrossRef | 1:CAS:528:DC%2BC38Xhs1Gns7nP&md5=893282770e712a717d849d851840b98dCAS | open url image1

[34]  J. F. Liu, S. Legros, F. Von der Kammer, T. Hofmann, Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ. Sci. Technol. 2013, 47, 4113.
Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles.CrossRef | 1:CAS:528:DC%2BC3sXlsVGmu70%3D&md5=af57017f20142369469c73852851d304CAS | open url image1

[35]  B. Derjaguin, A theory of interaction of particles in presence of electric double-layers and the stability of lyophobe colloids and disperse systems. Prog. Surf. Sci. 1993, 43, 1.
A theory of interaction of particles in presence of electric double-layers and the stability of lyophobe colloids and disperse systems.CrossRef | open url image1

[36]  E. J. W. Verwey, J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids 1948 (Elsevier: Amsterdam).

[37]  B. Vincent, P. F. Luckham, F. A. Waite, Effect of free polymer on the stability of sterically stabilized dispersions. J. Colloid Interface Sci. 1980, 73, 508.
Effect of free polymer on the stability of sterically stabilized dispersions.CrossRef | 1:CAS:528:DyaL3cXhsVOgu70%3D&md5=9b34704351439cf2a2ceb8778b1f3399CAS | open url image1

[38]  T. Phenrat, J. E. Song, C. M. Cisneros, D. P. Schoenfelder, R. D. Tilton, G. V. Lowry, Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ. Sci. Technol. 2010, 44, 4531.
Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model.CrossRef | 1:CAS:528:DC%2BC3cXmtVSgtr4%3D&md5=c33ef577520d17d75aac4b4956ed537dCAS | 20465214PubMed | open url image1

[39]  J. L. Ortega-Vinuesa, A. Martin-Rodriguez, R. H. Hidalgo-Alvarez, Colloidal stability of polymer colloids with different interfacial properties: mechanisms. J. Colloid Interface Sci. 1996, 184, 259.
Colloidal stability of polymer colloids with different interfacial properties: mechanisms.CrossRef | 1:CAS:528:DyaK28XntFOhu7s%3D&md5=2b9d42d52aaec8b31c78cf361c3dd98eCAS | 8954662PubMed | open url image1

[40]  H. Ohshima, Electrophoresis of soft particles. Adv. Colloid Interfac. 1995, 62, 189.
Electrophoresis of soft particles.CrossRef | 1:CAS:528:DyaK2MXpslGrsb8%3D&md5=a057a0fd5970d33558da0a0e39a70f53CAS | open url image1

[41]  R. J. Hill, D. A. Saville, W. B. Russel, Electrophoresis of spherical polymer-coated colloidal particles. J. Colloid Interface Sci. 2003, 258, 56.
Electrophoresis of spherical polymer-coated colloidal particles.CrossRef | 1:CAS:528:DC%2BD3sXhtlGqtLk%3D&md5=78dee1cf4c7d6f412cf632b3abf08186CAS | open url image1

[42]  J. F. L. Duval, H. Ohshima, Electrophoresis of diffuse soft particles. Langmuir 2006, 22, 3533.
Electrophoresis of diffuse soft particles.CrossRef | 1:CAS:528:DC%2BD28Xit1Oks7s%3D&md5=bf200b8cd0736a5a298042ad3a361f60CAS | open url image1

[43]  S. H. Lin, M. R. Wiesner, Theoretical investigation on the interaction between a soft particle and a rigid surface. Chem. Eng. J. 2012, 191, 297.
Theoretical investigation on the interaction between a soft particle and a rigid surface.CrossRef | 1:CAS:528:DC%2BC38XmsFyqsbo%3D&md5=ef6e3e178059cfc2635ec8f8e0e3b76fCAS | open url image1

[44]  S. M. Louie, T. Phenrat, M. J. Small, R. D. Tilton, G. V. Lowry, Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids. Langmuir 2012, 28, 10 334.
Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids.CrossRef | 1:CAS:528:DC%2BC38XoslGit78%3D&md5=0072c718cdfe72b3d261b6cd103a9a55CAS | open url image1

[45]  M. Borkovec, I. Szilagyi, I. Popa, M. Finessi, P. Sinha, P. Maroni, G. Papastavrou, Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique. Adv. Colloid Interfac. 2012, 179–182, 85.
Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique.CrossRef | open url image1

[46]  P. L. Golas, S. Louie, G. V. Lowry, K. Matyjaszewski, R. D. Tilton, Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir 2010, 26, 16 890.
Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP.CrossRef | 1:CAS:528:DC%2BC3cXht12ju77I&md5=eac28d3fff074c7270b0c11f8b742e63CAS | open url image1

[47]  S. R. Chae, S. Y. Wang, Z. D. Hendren, M. R. Wiesner, Y. Watanabe, C. K. Gunsch, Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. J. Membr. Sci. 2009, 329, 68.
Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control.CrossRef | 1:CAS:528:DC%2BD1MXhvFGqtLs%3D&md5=2a4d69baf0905cdc7cc1ce1ffa461418CAS | open url image1

[48]  X. K. Cheng, A. T. Kan, M. B. Tomson, Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60. J. Nanopart. Res. 2005, 7, 555.
Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60.CrossRef | 1:CAS:528:DC%2BD2MXpsFWhsLo%3D&md5=1b6a3276e05ac47ca310ac9bd356a8c4CAS | open url image1

[49]  G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces 1993 (Chapman & Hall: London).

[50]  H. J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J. Colloid Interface Sci. 2012, 370, 1.
Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media.CrossRef | 1:CAS:528:DC%2BC38Xhsleqsrs%3D&md5=8ba65fa709f9023e17dfe04e9309fe94CAS | 22284571PubMed | open url image1

[51]  H. J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol. 2009, 43, 3824.
Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers.CrossRef | 1:CAS:528:DC%2BD1MXkslOksrs%3D&md5=697a14a5e2c88fb0832d5790cac36510CAS | 19544894PubMed | open url image1

[52]  T. L. Doane, C. H. Chuang, R. J. Hill, C. Burda, Nanoparticle zeta-potentials. Acc. Chem. Res. 2012, 45, 317.
Nanoparticle zeta-potentials.CrossRef | 1:CAS:528:DC%2BC3MXhsVequrbO&md5=0648a9b06de1de9b791c5890721285b2CAS | 22074988PubMed | open url image1

[53]  W. M. Haynes (Ed.), Geophysics, astronomy, and acoustics, in CRC Handbook of Chemistry and Physics, 94th edn 2013, pp. 14–18 (CRC Press: Boca Raton, FL).

[54]  N. Tufenkji, M. Elimelech, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 2004, 38, 529.
Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media.CrossRef | 1:CAS:528:DC%2BD3sXptlKjs7w%3D&md5=69f47bbed810f5f6f5894957d0cb2b63CAS | 14750730PubMed | open url image1

[55]  M. Elimelech, W. H. Chen, J. J. Waypa, Measuring the zeta (electrokinetic) potential of reverse-osmosis membranes by a streaming potential analyzer. Desalination 1994, 95, 269.
Measuring the zeta (electrokinetic) potential of reverse-osmosis membranes by a streaming potential analyzer.CrossRef | 1:CAS:528:DyaK2cXlsFyquro%3D&md5=a993a7887e08c45069a1eb10d478e7f1CAS | open url image1

[56]  D. C. Henry, The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 1931, 133, 106.
The cataphoresis of suspended particles. Part I. The equation of cataphoresis.CrossRef | 1:CAS:528:DyaA38Xitlc%3D&md5=d2716d75d42e6a405035e661d59ae890CAS | open url image1

[57]  J. E. Gebhardt, D. W. Fuerstenau, Adsorption of polyacrylic acid at oxide–water interfaces. Colloids Surf. 1983, 7, 221.
Adsorption of polyacrylic acid at oxide–water interfaces.CrossRef | 1:CAS:528:DyaL3sXlsVeks7w%3D&md5=3024a857d03fce00621beb935b662796CAS | open url image1

[58]  J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, J. V. Weber, Photocatalytic decomposition of humic acids on TiO2. Part I. Discussion of adsorption and mechanism. J. Photoch. Photobio. A 2002, 152, 267.
Photocatalytic decomposition of humic acids on TiO2. Part I. Discussion of adsorption and mechanism.CrossRef | 1:CAS:528:DC%2BD38XmslOjtbY%3D&md5=48a9b3208b1b7379b216972fced72749CAS | open url image1

[59]  K. A. Huynh, K. L. Chen, Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ. Sci. Technol. 2011, 45, 5564.
Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions.CrossRef | 1:CAS:528:DC%2BC3MXmvVWkurw%3D&md5=8a7b8461f4e3ad391fdbbb7119cdbcecCAS | 21630686PubMed | open url image1

[60]  K. L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 2007, 309, 126.
Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.CrossRef | 1:CAS:528:DC%2BD2sXjtl2jt78%3D&md5=1e0c214b2bc39b8d345de94e91379958CAS | 17331529PubMed | open url image1

[61]  K. L. Chen, M. Elimelech, Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ. Sci. Technol. 2008, 42, 7607.
Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications.CrossRef | 1:CAS:528:DC%2BD1cXhtV2lu7fP&md5=7d941383084b240b6ff4cd0f6d072fabCAS | 18983082PubMed | open url image1

[62]  S. R. Chae, A. R. Badireddy, J. F. Budarz, S. H. Lin, Y. Xiao, M. Therezien, M. R. Wiesner, Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport. ACS Nano 2010, 4, 5011.
Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.CrossRef | 1:CAS:528:DC%2BC3cXhtVWqt7jM&md5=565d4deb648154d0e4afe05f79b6a119CAS | 20707347PubMed | open url image1

[63]  K. J. Wilkinson, E. Balnois, G. G. Leppard, J. Buffle, Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloid. Surface. A 1999, 155, 287.
Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy.CrossRef | 1:CAS:528:DyaK1MXksleis7k%3D&md5=3b9424c2c8523edc251a5cf0d9695ed7CAS | open url image1

[64]  R. L. Williams, D. F. Williams, Albumin adsorption on metal-surfaces. Biomaterials 1988, 9, 206.
Albumin adsorption on metal-surfaces.CrossRef | 1:CAS:528:DyaL1cXkvFykurc%3D&md5=daed550c46276c93f5079ad8591dc355CAS | 3408789PubMed | open url image1

[65]  S. H. Lin, M. R. Wiesner, Deposition of aggregated nanoparticles – a theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface. Environ. Sci. Technol. 2012, 46, 13 270.
Deposition of aggregated nanoparticles – a theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface.CrossRef | 1:CAS:528:DC%2BC38XhslWksbnI&md5=64fc05ddc5302b4ae427fceedc6487fcCAS | open url image1

[66]  S. Deguchi, T. Yamazaki, S. Mukai, R. Usami, K. Horikoshi, Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem. Res. Toxicol. 2007, 20, 854.
Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies.CrossRef | 1:CAS:528:DC%2BD2sXlt1Ogtbg%3D&md5=3e72fb337c825e70c9adb9b3fc04a31aCAS | 17503852PubMed | open url image1

[67]  R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. M. Li, W. Kim, P. J. Utz, H. J. Dai, Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984.
Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors.CrossRef | 1:CAS:528:DC%2BD3sXjs1yju7o%3D&md5=ffed473910980f181f7cbdba5e752209CAS | 12697899PubMed | open url image1

[68]  A. A. Keller, H. T. Wang, D. X. Zhou, H. S. Lenihan, G. Cherr, B. J. Cardinale, R. Miller, Z. X. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962.
Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.CrossRef | 1:CAS:528:DC%2BC3cXhvFWgtLk%3D&md5=30e187200504069c8bfd0e52f1011411CAS | 20151631PubMed | open url image1

[69]  R. F. Domingos, N. Tufenkji, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 2009, 43, 1282.
Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.CrossRef | 1:CAS:528:DC%2BD1MXotlKktA%3D%3D&md5=bb858a0eeb0445fe92775dcda539c1f6CAS | 19350891PubMed | open url image1

[70]  X. A. Li, J. J. Lenhart, H. W. Walker, Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 2010, 26, 16 690.
Dissolution-accompanied aggregation kinetics of silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC3cXht1ahtbbN&md5=5bdfe4601f8800f0443d5ed66c43294dCAS | open url image1

[71]  S. H. Lin, Y. W. Cheng, J. Liu, M. R. Wiesner, Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 2012, 28, 4178.
Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces.CrossRef | 1:CAS:528:DC%2BC38XmsVWhuw%3D%3D&md5=2a610f5cef16fafde0ceb5ed61e71a09CAS | open url image1

[72]  J. Brant, H. Lecoanet, M. Hotze, M. Wiesner, Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ. Sci. Technol. 2005, 39, 6343.
Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures.CrossRef | 1:CAS:528:DC%2BD2MXktlKis70%3D&md5=63bde56d5af1fa75ec63445cbe6a2858CAS | 16190186PubMed | open url image1

[73]  Y. G. Wang, Y. S. Li, J. Costanza, L. M. Abriola, K. D. Pennell, Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. Environ. Sci. Technol. 2012, 46, 11 761.
Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents.CrossRef | 1:CAS:528:DC%2BC38XhtlGjsbfJ&md5=1d48e3b2bc72f7aad4d3d0220b2fa689CAS | open url image1

[74]  D. Grolimund, M. Elimelech, M. Borkovec, Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloid Surf. A 2001, 191, 179.
Aggregation and deposition kinetics of mobile colloidal particles in natural porous media.CrossRef | 1:CAS:528:DC%2BD3MXlslCju78%3D&md5=eec76acfaa559f86ccf3e0a98b5eacd3CAS | open url image1

[75]  S. Walker, M. Elimelech, J. Redman, Influence of growth phase on bacterial deposition: interaction mechanisms in packed-bed column and radial stagnation point flow systems. Environ. Sci. Technol. 2006, 40, 5586.
Influence of growth phase on bacterial deposition: interaction mechanisms in packed-bed column and radial stagnation point flow systems.CrossRef | 1:CAS:528:DC%2BD28XnslKmu7g%3D&md5=d44976045ef62183dc0dfd8a01c970b6CAS | open url image1

[76]  C. Flood, T. Cosgrove, D. Qiu, Y. Espidel, I. Howell, P. Revell, Influence of a surfactant and electrolytes on adsorbed polymer layers. Langmuir 2007, 23, 2408.
Influence of a surfactant and electrolytes on adsorbed polymer layers.CrossRef | 1:CAS:528:DC%2BD2sXnt1Oitw%3D%3D&md5=24041cfea71139a58ba4363c48bed758CAS | 17309202PubMed | open url image1

[77]  D. H. Tsai, M. Davila-Morris, F. W. DelRio, S. Guha, M. R. Zachariah, V. A. Hackley, Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir 2011, 27, 9302.
Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy.CrossRef | 1:CAS:528:DC%2BC3MXotFSgtr0%3D&md5=5969083d2e304d5bed91626146f2f53dCAS | 21726083PubMed | open url image1

[78]  C. Levard, B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, G. E. Brown, Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, 5260.
Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.CrossRef | 1:CAS:528:DC%2BC3MXmtlCkuro%3D&md5=78a71476ddabcc48bd33cb3b00909833CAS | 21598969PubMed | open url image1

[79]  B. L. T. Lau, W. C. Hockaday, K. Ikuma, O. Furman, A. W. Decho, A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloid Surf. A 2013, 435, 22.
A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics.CrossRef | 1:CAS:528:DC%2BC3sXhtVKhuw%3D%3D&md5=508cd974959758d7139ee520ec11a5daCAS | open url image1

[80]  S. J. Mears, T. Cosgrove, L. Thompson, I. Howell, Solvent relaxation NMR measurements on polymer, particle, surfactant systems. Langmuir 1998, 14, 997.
Solvent relaxation NMR measurements on polymer, particle, surfactant systems.CrossRef | 1:CAS:528:DyaK1cXpvV2qtQ%3D%3D&md5=4bc89a53d205fe567b8268d05bb32be5CAS | open url image1

[81]  K. K. Au, S. L. Yang, C. R. O’Melia, Adsorption of weak polyelectrolytes on metal oxide surfaces: a hybrid SC/SF approach. Environ. Sci. Technol. 1998, 32, 2900.
Adsorption of weak polyelectrolytes on metal oxide surfaces: a hybrid SC/SF approach.CrossRef | 1:CAS:528:DyaK1cXlsVKmur0%3D&md5=5ae3647c9ac4336219f56adf3e072facCAS | open url image1



Supplementary MaterialSupplementary Material 1.76 MB Export Citation