Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Release of arsenite, arsenate and methyl-arsenic species from streambed sediment affected by acid mine drainage: a microcosm study

Marina Héry A D , Corinne Casiot A C D , Eléonore Resongles A , Zoe Gallice A , Odile Bruneel A B , Angélique Desoeuvre A and Sophie Delpoux A

A Laboratoire HydroSciences Montpellier, HSM, UMR 5569 (IRD, CNRS, Universités Montpellier 1 et 2), Université Montpellier 2, Place E. Bataillon, CC MSE, F-34095 Montpellier, France.

B Laboratoire Mixte International Biotechnologie Microbienne et Végétale; Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Avenue Ibn Batouta BP1014, Université Mohammed V. Rabat, Morocco.

C Corresponding author: casiot@msem.univ-montp2.fr

D Both authors contributed equally to this work.

Environmental Chemistry 11(5) 514-524 http://dx.doi.org/10.1071/EN13225
Submitted: 10 December 2013  Accepted: 5 May 2014   Published: 14 August 2014

Environmental context. Arsenic-rich waters generated from the oxidation of mining wastes are responsible for the severe contamination of river waters and sediments located downstream from mining sites. Under certain environmental conditions, the affected riverbed sediments may represent a reservoir for arsenic from which this toxic element may be released into water, mainly as a consequence of microbial activity.

Abstract. The (bio-)geochemical processes driving As mobilisation from streambed sediments affected by acid mine drainage (AMD) were investigated, and the structure of the bacterial community associated with the sediments was characterised. Microcosm experiments were set up to determine the effect of oxygen, temperature (4 and 20 °C) and microbial activity on As mobilisation from contrasting sediments collected during high- (November 2011) and low- (March 2012) flow conditions in the Amous River, that received AMD. Distinct bacterial communities thrived in the two sediments, dominated by Rhodobacter spp., Polaromonas spp. and Sphingomonads. These communities included only few bacteria known for their capacity to interact directly with As, whereas biogeochemical processes appeared to control As cycling. Major As mobilisation occurred in the AsIII form at 20 °C in anoxic conditions, from both November and March sediments, as the result of successive biotic reductive dissolution of Mn- and Fe-oxyhydroxides. The later process may be driven by Mn- and Fe-reducing bacteria such as Geobacter spp. and possibly occurred in combination with microbially mediated AsV reduction. The involvement of other bacteria in these redox processes is not excluded. Biomethylation occurred only with the sediments collected at low-flow during oxic and anoxic conditions, although no bacteria characterised so far for its ability to methylate As was identified. Finally, sorption equilibrium of AsV onto the sediment appeared to be the main process controlling AsV concentration in oxic conditions. Comparison with field data shows that the later process, besides biomethylation, may be of relevance to the As fate in AMD-affected streams.

Additional keywords: bacterial communities, biomethylation.


References

[1]  D. B. Johnson, K. B. Hallberg, Acid mine drainage remediation options: a review. Sci. Total Environ. 2005, 338, 3.
Acid mine drainage remediation options: a review.CrossRef | 1:CAS:528:DC%2BD2MXoslegug%3D%3D&md5=c3f54bcd0eff022fc1dc7fd7ce43fe90CAS | 15680622PubMed | open url image1

[2]  B. A. Butler, Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Water Res. 2009, 43, 1392.
Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.CrossRef | 1:CAS:528:DC%2BD1MXislKlsrY%3D&md5=cd416cb895e04198bb6a048594453d96CAS | 19110291PubMed | open url image1

[3]  B. A. Butler, Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments. Water Res. 2011, 45, 328.
Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments.CrossRef | 1:CAS:528:DC%2BC3cXhsFSqur7F&md5=7b7be4587de5a6cc4d3404b04e19b2ffCAS | 20709348PubMed | open url image1

[4]  J. M. Park, J. S. Lee, J. U. Lee, H. T. Chon, M. C. Jung, Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J. Geochem. Explor. 2006, 88, 134.
Microbial effects on geochemical behavior of arsenic in As-contaminated sediments.CrossRef | 1:CAS:528:DC%2BD28XhtVahtr4%3D&md5=a5f2695f3c343356dd2493689bdc6d5bCAS | open url image1

[5]  K. H. Nealson, Sediment bacteria: who’s there, what are they doing, and what's new? Annu. Rev. Earth Planet. Sci. 1997, 25, 403.
Sediment bacteria: who’s there, what are they doing, and what's new?CrossRef | 1:CAS:528:DyaK2sXjslekt7k%3D&md5=990ce201c46e392f69a3485291ba49b5CAS | 11540735PubMed | open url image1

[6]  C. Lors, C. Tiffreau, A. Laboudigue, Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 2004, 56, 619.
Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments.CrossRef | 1:CAS:528:DC%2BD2cXltVKhsLk%3D&md5=6f80a1d1a82529d82fb5a60b27ef40c1CAS | 15212904PubMed | open url image1

[7]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.CrossRef | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=e91f95bcfc6b5336d0e64af1fca2a6c1CAS | open url image1

[8]  B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58, 201.
Arsenic round the world: a review.CrossRef | 1:CAS:528:DC%2BD38XlvVGnsbg%3D&md5=af84d99c9b1453ef9681eac40e82a044CAS | 18968746PubMed | open url image1

[9]  C. Casiot, S. Lebrun, G. Morin, O. Bruneel, J. C. Personné, F. Elbaz-Poulichet, Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci. Total Environ. 2005, 347, 122.
Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage.CrossRef | 1:CAS:528:DC%2BD2MXntVCqsL8%3D&md5=443d3d849b07ba0fd267a0e69339b5d1CAS | 16084973PubMed | open url image1

[10]  H. Cheng, Y. Hub, J. Luoc, B. Xua, J. Zhao, Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J. Hazard. Mater. 2009, 165, 13.
Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems.CrossRef | 1:CAS:528:DC%2BD1MXks12muro%3D&md5=b5da1800374966fcb54c44f24ee91582CAS | 19070955PubMed | open url image1

[11]  T. Z. Guo, R. D. DeLaune, W. H. Patrick, The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environ. Int. 1997, 23, 305.
The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment.CrossRef | 1:CAS:528:DyaK2sXktFaltro%3D&md5=36b93c5cef34221224c941540bb7a1b5CAS | open url image1

[12]  H. W. Langner, W. P. Inskeep, Microbial reduction of arsenate in the presence of ferrihydrite. Environ. Sci. Technol. 2000, 34, 3131.
Microbial reduction of arsenate in the presence of ferrihydrite.CrossRef | 1:CAS:528:DC%2BD3cXktVahsbg%3D&md5=165f675d3a2c1ba372837d7d71795c2dCAS | open url image1

[13]  Y. Takahashi, R. Minamikawa, K. H. Hattori, K. Kurishima, N. Kihou, K. Yuita, Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 2004, 38, 1038.
Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods.CrossRef | 1:CAS:528:DC%2BD2cXktVelsw%3D%3D&md5=9090cd8a3a0fe540d51ee4d34b5f3ad6CAS | 14998016PubMed | open url image1

[14]  M. Herbel, S. Fendorf, Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem. Geol. 2006, 228, 16.
Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands.CrossRef | 1:CAS:528:DC%2BD28XjsFehs7k%3D&md5=ee669ab2543159ff7de89502666d4e91CAS | open url image1

[15]  J. Routh, A. Bhattacharya, A. Saraswathy, G. Jacks, P. Bhattacharya, Arsenic remobilization from sediments contaminated with mine tailings near the Adak mine in Vasterbotten district (northern Sweden). J. Geochem. Explor. 2007, 92, 43.
Arsenic remobilization from sediments contaminated with mine tailings near the Adak mine in Vasterbotten district (northern Sweden).CrossRef | 1:CAS:528:DC%2BD28Xht12jtb7N&md5=fa42c629cd9add94bb3636bed2085bd9CAS | open url image1

[16]  D. A. Rubinos, L. Iglesias, F. Diaz-Fierros, M. T. Barral, Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain). Aquat. Geochem. 2011, 17, 281.
Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain).CrossRef | 1:CAS:528:DC%2BC3MXmsVams78%3D&md5=2b303528607afeb6bd3f2be766b7a6a0CAS | open url image1

[17]  S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182.
Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.CrossRef | 1:CAS:528:DC%2BD3sXmtFOltr8%3D&md5=e95cefdfa6e7bd583150adbcd471263fCAS | 14524451PubMed | open url image1

[18]  K. J. Tufano, C. Reyes, C. W. Saltikov, S. Fendorf, Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 2008, 42, 8283.
Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction.CrossRef | 1:CAS:528:DC%2BD1cXht1CgsbfP&md5=3eb971791cc4dd832fa632dd68654eafCAS | 19068807PubMed | open url image1

[19]  S. Silver, K. Budd, K. M. Leahy, W. V. Shaw, D. Hammond, R. P. Novick, G. R. Willsky, M. H. Malamy, H. Rosenberg, Inducible plasmid determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 1981, 146, 983.
| 1:CAS:528:DyaL3MXktlyqt7c%3D&md5=ed3d01693261e51424f217ecf934b300CAS | 7016838PubMed | open url image1

[20]  R. S. Oremland, J. F. Stolz, The ecology of arsenic. Science 2003, 300, 939.
The ecology of arsenic.CrossRef | 1:CAS:528:DC%2BD3sXjsVyjsLs%3D&md5=840e38f53bf5d9201af72c47691ceb50CAS | 12738852PubMed | open url image1

[21]  M. Azizur Rahman, H. Hasegawa, Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation. Appl. Geochem. 2012, 27, 304.
Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation.CrossRef | 1:CAS:528:DC%2BC38XkslOktQ%3D%3D&md5=75d18ef3ba6a5f2d01ce4026ba977ebfCAS | open url image1

[22]  X. X. Yin, J. Chen, J. Qin, G.-X. Sun, B. P. Rosen, Y.-G. Zhu, Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. 2011, 156, 1631.
Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria.CrossRef | 1:CAS:528:DC%2BC3MXptFWksbY%3D&md5=b9d56d4891a5579c82ab3d5e6c8cc3c1CAS | 21562336PubMed | open url image1

[23]  C. Casiot, M. Egal, O. Bruneel, C. Bancon-Montigny, M. A. Cordier, E. Gomez, C. Aliaume, F. Elbaz-Poulichet, Hydrological and geochemical controls on metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous river, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl. Geochem. 2009, 24, 787.
Hydrological and geochemical controls on metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous river, France); preliminary assessment of impacts on fish (Leuciscus cephalus).CrossRef | 1:CAS:528:DC%2BD1MXltVWgu7k%3D&md5=baff103330bbaefaa459200b8788dcc4CAS | open url image1

[24]  M. Leblanc, B. Achard, D. Ben Othman, J. M. Luck, Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Appl. Geochem. 1996, 11, 541.
Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites).CrossRef | 1:CAS:528:DyaK28XmtVSgtb0%3D&md5=b4a04afe601d96d7c6a04f1b8fff6620CAS | open url image1

[25]  C. Casiot, G. Morin, F. Juillot, O. Bruneel, J. C. Personné, M. Leblanc, K. Duquesne, V. Bonnefoy, F. Elbaz-Poulichet, Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès Creek, France). Water Res. 2003, 37, 2929.
Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès Creek, France).CrossRef | 1:CAS:528:DC%2BD3sXktVeisbg%3D&md5=a4f6adeb0d9c89b322f5e5f8c9aff71fCAS | 12767295PubMed | open url image1

[26]  W. G. Weisburg, S. M. Barns, D. A. Pelletier, D. J. Lane, 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697.
| 1:CAS:528:DyaK3MXhsl2lurY%3D&md5=bf96337d68466ac0cd09bfbe9ad37cadCAS | 1987160PubMed | open url image1

[27]  S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403.
Basic local alignment search tool.CrossRef | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=6096f6fa6531627bd8bb5cad4d185365CAS | 2231712PubMed | open url image1

[28]  R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194.
UCHIME improves sensitivity and speed of chimera detection.CrossRef | 1:CAS:528:DC%2BC3MXhtVSiurvL&md5=c587be8adffb8af6ca8ca3acaaf732f1CAS | 21700674PubMed | open url image1

[29]  P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. Van Horn, C. F. Weber, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537.
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.CrossRef | 1:CAS:528:DC%2BC3cXis1yltw%3D%3D&md5=94878970b55203288dd2e12eda015ce6CAS | 19801464PubMed | open url image1

[30]  M. Cardinale, L. Brusetti, P. Quatrini, S. Borin, A. M. Puglia, A. Rizzi, A. Zanardini, C. Sorlini, C. Corselli, D. Daffonchio, Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl. Environ. Microbiol. 2004, 70, 6147.
Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities.CrossRef | 1:CAS:528:DC%2BD2cXosl2hs7o%3D&md5=a3fb0066372a734986b3edbf2957952fCAS | 15466561PubMed | open url image1

[31]  D. K. Nordstrom, Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777.
Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters.CrossRef | 1:CAS:528:DC%2BC3MXhsVamu7nF&md5=f13881c98e70866a0f5961368850c1b8CAS | open url image1

[32]  A. Adra, G. Morin, G. Ona-Nguema, N. Menguy, F. Maillot, C. Casiot, O. Bruneel, S. Lebrun, F. Juillot, J. Brest, Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage. Environ. Sci. Technol. 2013, 47, 12 784.
Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.CrossRef | 1:CAS:528:DC%2BC3sXhsFOks7zL&md5=8da48ec7586b6e21271e5223c156bb7bCAS | open url image1

[33]  G. L. Rupp, V. D. Adams, Calcium Carbonate Precipitation as Influenced by Stream Primary Production. Paper 116 1981 (Utah State University, Utah Water Research Laboratory: Logan, UT). Available at http://digitalcommons.usu.edu/water_rep/116 [Verified 20 June 2014].

[34]  G. Lee, J. M. Bigham, G. Faure, Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem. 2002, 17, 569.
Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee.CrossRef | 1:CAS:528:DC%2BD38XhvVSmuro%3D&md5=076421d7643335d45c4c17934bdd31a7CAS | open url image1

[35]  K. Koffi, M. Leblanc, H. Jourde, C. Casiot, S. Pistre, P. Gouze, F. Elbaz-Poulichet, Reverse oxidation zoning at a mine tailings stock generating arsenic-rich acid waters (Carnoulès, France). Mine Water Environ. 2003, 22, 7.
Reverse oxidation zoning at a mine tailings stock generating arsenic-rich acid waters (Carnoulès, France).CrossRef | 1:CAS:528:DC%2BD3sXivFGrs7o%3D&md5=73c3193f01811cc6d6a451d6afe4adc8CAS | open url image1

[36]  M. P. Asta, C. Ayora, G. Román-Ross, J. Cama, P. Acero, A. G. Gault, J. M. Charnock, F. Bardelli, Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates. Chem. Geol. 2010, 271, 1.
Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates.CrossRef | 1:CAS:528:DC%2BC3cXht1Ojt7s%3D&md5=e000ba481af3f86c9d427ee80151e787CAS | open url image1

[37]  J. Majzlan, B. Lalinská, M. Chovan, L. Jurkovič, S. Milovská, J. Gőttlicher, The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia). Geochim. Cosmochim. Acta 2007, 71, 4206.
The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia).CrossRef | 1:CAS:528:DC%2BD2sXpslymtbo%3D&md5=20231b2864bdc6172a177a1167105bb2CAS | open url image1

[38]  P. Byrne, P. J. Wood, I. Reid, The impairment of river systems by metal mine contamination: a review including remediation options. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2017.
The impairment of river systems by metal mine contamination: a review including remediation options.CrossRef | 1:CAS:528:DC%2BC38XhsVOqsLfF&md5=679c957116785abec98877a8d1cca1d3CAS | open url image1

[39]  L. Giotta, A. Agostiano, F. Italiano, F. Milano, M. Trotta, Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 2006, 62, 1490.
Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides.CrossRef | 1:CAS:528:DC%2BD28XhvVeiuro%3D&md5=52a2c35511c8f217cd2cbaecfe857dbfCAS | 16081134PubMed | open url image1

[40]  B. B. Nepple, J. Kessi, R. Bachofen, Chromate reduction by Rhodobacter sphaeroides. J. Ind. Microbiol. Biotechnol. 2000, 25, 198.
Chromate reduction by Rhodobacter sphaeroides.CrossRef | 1:CAS:528:DC%2BD3MXlvF2nsw%3D%3D&md5=810e71e32aa8dafef38b9969dea3f5bcCAS | open url image1

[41]  J. M. Yagi, D. Sims, T. Brettin, D. Bruce, E. L. Madsen, The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ. Microbiol. 2009, 11, 2253.
The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer.CrossRef | 1:CAS:528:DC%2BD1MXht1GntrfP&md5=1e5afe32f3275e4e0746f92ad24aba65CAS | 19453698PubMed | open url image1

[42]  L. Haller, M. Tonoll, J. Zopfi, R. Peduzzi, W. Wildi, J. Poté, Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland). Water Res. 2011, 45, 1213.
Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland).CrossRef | 1:CAS:528:DC%2BC3MXjtVan&md5=bd044409cda4c6ee15234dda6468fb82CAS | 21145090PubMed | open url image1

[43]  T. R. Miller, A. L. Delcher, S. L. Salzberg, E. Saunders, J. C. Detter, R. U. Halden, Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J. Bacteriol. 2010, 192, 6101.
Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1.CrossRef | 1:CAS:528:DC%2BC3MXis1Klsg%3D%3D&md5=0649c52a15418c18dcd90ae3bb2c95feCAS | 20833805PubMed | open url image1

[44]  V. A. Jackson, A. N. Paulse, J. P. Odendaal, S. Khan, W. Khan, Identification of metal tolerant organisms isolated from the Plankenburg River, Western Cape, South Africa. Water S.A. 2012, 38, 29.
Identification of metal tolerant organisms isolated from the Plankenburg River, Western Cape, South Africa.CrossRef | 1:CAS:528:DC%2BC38XivFars7w%3D&md5=4724fd346e6b050cbccfaa2514cfcf76CAS | open url image1

[45]  M. E. Farias, S. Revale, E. Mancini, O. Ordonez, A. Turjanski, N. Cortez, M. P. Vazquez, Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean puna. J. Bacteriol. 2011, 193, 3686.
Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean puna.CrossRef | 1:CAS:528:DC%2BC3MXptFWktbY%3D&md5=f55a4745980472f93f6251028dac5ff3CAS | 21602338PubMed | open url image1

[46]  G. Lear, B. Song, A. G. Gault, D. A. Polya, J. R. Lloyd, Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl. Environ. Microbiol. 2007, 73, 1041.
Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate.CrossRef | 1:CAS:528:DC%2BD2sXitlyqsrg%3D&md5=ad2324dfc0f226db2f4a3d7a899583f4CAS | 17114326PubMed | open url image1

[47]  D. C. White, S. D. Suttont, D. B. Ringelberg, The genus Sphingomonas: physiology and ecology. Curr. Opin. Biotechnol. 1996, 7, 301.
The genus Sphingomonas: physiology and ecology.CrossRef | 1:CAS:528:DyaK28XjvVKnu7w%3D&md5=98e562c3f3b06b679385184f2dc7337bCAS | 8785434PubMed | open url image1

[48]  Z. J. Zhou, H. Q. Yin, Y. Liu, M. Xie, G. Z. Qiu, X. D. Liu, Diversity of microbial community at acid mine drainages from Dachang metals-rich mine, China. Trans. Nonferrous Met. Soc. China 2010, 20, 1097.
Diversity of microbial community at acid mine drainages from Dachang metals-rich mine, China.CrossRef | 1:CAS:528:DC%2BC3cXpvFahsL4%3D&md5=46387e8cb18f6277f3aae10c24ee2f22CAS | open url image1

[49]  D. R. Nicholas, S. Ramamoorthy, V. Palace, S. Spring, J. N. Moore, R. F. Rosenzweig, Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation 2003, 14, 123.
Biogeochemical transformations of arsenic in circumneutral freshwater sediments.CrossRef | 1:CAS:528:DC%2BD3sXktlWgtLw%3D&md5=118dd36ef4b358bffb6aad2b4c0451f1CAS | 12877467PubMed | open url image1

[50]  W. M. Mok, C. M. Wai, Distribution and mobilization of arsenic and antimony species in the Coeur d’Alene river, Idaho. Environ. Sci. Technol. 1990, 24, 102.
Distribution and mobilization of arsenic and antimony species in the Coeur d’Alene river, Idaho.CrossRef | 1:CAS:528:DyaK3cXisFagsA%3D%3D&md5=867ed2a96837254b5667f8392bac1c7dCAS | open url image1

[51]  F. S. Islam, A. G. Gault, C. Boothman, D. A. Polya, J. M. Charnock, D. Chatterjee, J. R. Lloyd, Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68.
Role of metal-reducing bacteria in arsenic release from Bengal delta sediments.CrossRef | 1:CAS:528:DC%2BD2cXlt1Cqt7c%3D&md5=07a3ade80cca1d42f0e375dd9a62d0aaCAS | 15229598PubMed | open url image1

[52]  H. A. L. Rowland, R. L. Pederick, D. A. Polya, R. D. Pancost, B. E. Van Dongen, A. G. Gault, D. J. Vaughan, C. Bryant, B. Anderson, J. R. Lloyd, The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 2007, 5, 281.
The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia.CrossRef | 1:CAS:528:DC%2BD2sXhtFCgurfN&md5=42d0f2ef51b32b8f089e7d50d1435518CAS | open url image1

[53]  M. Héry, B. E. van Dongen, F. Gill, D. Mondal, D. J. Vaughan, R. D. Pancost, D. A. Polya, J. R. Lloyd, Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 2010, 8, 155.
Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal.CrossRef | 20156294PubMed | open url image1

[54]  L. Giloteaux, D. E. Holmes, K. H. Williams, K. C. Wrighton, M. J. Wilkins, A. P. Montgomery, J. A. Smith, R. Orellana, C. A. Thompson, T. J. Roper, P. E. Long, D. R. Lovley, Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. ISME J. 2013, 7, 370.
Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation.CrossRef | 1:CAS:528:DC%2BC3sXhsVans7k%3D&md5=7b270c5b0b030f11b405388fe8d86357CAS | 23038171PubMed | open url image1

[55]  Y. Masue-Slowey, R. H. Loeppert, S. Fendorf, Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: implications for As retention. Geochim. Cosmochim. Acta 2011, 75, 870.
Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: implications for As retention.CrossRef | 1:CAS:528:DC%2BC3MXjtVarsg%3D%3D&md5=a4d733d97cabba0497153fd5be376dd0CAS | open url image1

[56]  J. R. Lloyd, A. G. Gault, M. Héry, J. D. MacRae, Microbial transformations of arsenic in the subsurface. In Environmental Microbe-Metal Interactions II (Eds J. F. Stolz, R. S, Oremland), 2011, pp. 77–90 (ASM Press: Washington, DC).

[57]  S. C. Ying, Y. Masue-Slowey, B. D. Kocar, S. D. Griffis, S. Webb, M. A. Marcus, C. A. Francis, S. Fendorf, Distributed microbially and chemically mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. Geochim. Cosmochim. Acta 2013, 104, 29.
Distributed microbially and chemically mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates.CrossRef | 1:CAS:528:DC%2BC3sXitVOnurY%3D&md5=15112e5f6ee4aeab13e8807b6beb9f2eCAS | open url image1

[58]  K. Bosecker, Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591.
Bioleaching: metal solubilization by microorganisms.CrossRef | 1:CAS:528:DyaK2sXltl2msbc%3D&md5=4dbe1b493082f0d324726884fbf1231cCAS | open url image1

[59]  R. N. vanden Hoven, J. M. Santini, Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim. Biophys. Acta 2004, 1656, 148.
Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor.CrossRef | 1:CAS:528:DC%2BD2cXks1Cjsr0%3D&md5=464b1cb5efc3683efb8b19519781c992CAS | 15178476PubMed | open url image1

[60]  R. Bentley, T. G. Chasteen, Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250.
Microbial methylation of metalloids: arsenic, antimony, and bismuth.CrossRef | 1:CAS:528:DC%2BD38XltFSltrs%3D&md5=48186e246fd2c12054bdda68c760d523CAS | 12040126PubMed | open url image1

[61]  J. Meyer, K. Michalke, T. Kouril, R. Hensel, Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Syst. Appl. Microbiol. 2008, 31, 81.
Volatilisation of metals and metalloids: an inherent feature of methanoarchaea?CrossRef | 1:CAS:528:DC%2BD1cXhtVWmsbjJ&md5=d5048e7cd4996a4e0808c618a134c79dCAS | 18396004PubMed | open url image1

[62]  J. Ye, C. Rensing, B. P. Rosen, Y.-G. Zhu, Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 2012, 17, 155.
Arsenic biomethylation by photosynthetic organisms.CrossRef | 1:CAS:528:DC%2BC38Xjs1Wis7c%3D&md5=d51112ff8cacbc204d55e261fd2eb7b5CAS | 22257759PubMed | open url image1

[63]  A. Mestrot, J. Feldmann, E. M. Krupp, M. S. Hossain, G. Roman-Ross, A. A. Meharg, Field fluxes and speciation of arsines emanating from soils. Environ. Sci. Technol. 2011, 45, 1798.
Field fluxes and speciation of arsines emanating from soils.CrossRef | 1:CAS:528:DC%2BC3MXhtlajtLY%3D&md5=b1bdca0e44f612c6e5ae024831cf352dCAS | 21284382PubMed | open url image1

[64]  Y. Jia, H. Huang, M. Zhong, F.-H. Wang, L.-M. Zhang, Y.-G. Zhu, Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Technol. 2013, 47, 3141.
| 1:CAS:528:DC%2BC3sXjsFGjtL4%3D&md5=57836a7be4c35050c555c548d5f0189dCAS | 23469919PubMed | open url image1

[65]  S. A. Nagorski, J. N. Moore, Arsenic mobilization in the hyporheic zone of a contaminated stream. Water Resour. Res. 1999, 35, 3441.
Arsenic mobilization in the hyporheic zone of a contaminated stream.CrossRef | 1:CAS:528:DyaK1MXnsVWhs7s%3D&md5=3f1d2604b4941bf17292e624658e7e6eCAS | open url image1

[66]  L. Duester, J. P. M. Vink, A. V. Hirner, Methylantimony and –arsenic Species in sediment pore water tested with the sediment or fauna incubation experiment. Environ. Sci. Technol. 2008, 42, 5866.
Methylantimony and –arsenic Species in sediment pore water tested with the sediment or fauna incubation experiment.CrossRef | 1:CAS:528:DC%2BD1cXot1ahu7w%3D&md5=165e56f739450021a476cabe6ebcb1feCAS | 18767637PubMed | open url image1



Supplementary MaterialSupplementary Material 536 KB Export Citation