Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT (Open Access)

Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation and single particle ICP-MS)

Kim Proulx A and Kevin J. Wilkinson A B

A Department of Chemistry, Biophysical Environmental Chemistry group, University of Montreal, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.

B Corresponding author. Email: kj.wilkinson@umontreal.ca

Environmental Chemistry 11(4) 392-401 http://dx.doi.org/10.1071/EN13232
Submitted: 17 December 2013  Accepted: 2 May 2014   Published: 24 July 2014

Environmental context. The effects of engineered nanoparticles on the environment and on human health are difficult to evaluate largely because nanoparticles are so difficult to measure. The main problems are that concentrations are low and the engineered nanoparticles are often difficult to distinguish from the environmental matrices in which they are found. We report a separation technique that facilitates the detection of engineered nanoparticles in natural waters.

Abstract. Few analytical techniques are presently able to detect and quantify engineered nanoparticles (ENPs) in the environment. The major challenges result from the complex matrices of environmental samples and the low concentrations at which the ENPs are expected to be found. Separation techniques such as asymmetric flow field flow fractionation (AF4) and more recently, hydrodynamic chromatography (HDC) have been used to partly resolve ENPs from their complex environmental matrices. In this paper, HDC was first coupled to light scattering detectors in order to develop a method that would allow the separation and detection of ENPs spiked into a natural water. Size fractionated samples were characterised using off-line detectors including analytical ultracentrifugation (AUC), dynamic light scattering (DLS) and single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). HDC was able to separate a complex mixture of polystyrene, silver and gold nanoparticles (radii of 60, 40, 20 and 10 nm) contained within a river water matrix. Furthermore, the feasibility of using HDC coupled to SP-ICP-MS was demonstrated by detecting 4 µg L–1 of a 20-nm (radius) nAg in a river water sample.


References

[1]  M. F. Hochella, Nanoscience and technology the next revolution in the Earth sciences. Earth Planet. Sci. Lett. 2002, 203, 593.
Nanoscience and technology the next revolution in the Earth sciences.CrossRef | 1:CAS:528:DC%2BD38XnvF2ksbw%3D&md5=684beb00eb2a6c772fe4a3b0690e32a0CAS | open url image1

[2]  M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006, 40, 4336.
Assessing the risks of manufactured nanomaterials.CrossRef | 1:CAS:528:DC%2BD28XmvFWgsb4%3D&md5=658e5cb90b427a2f73b2955afad59c89CAS | 16903268PubMed | open url image1

[3]  D. P. Rakcheev, A. Philippe, G. E. Schaumann, Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates. Anal. Chem. 2013, 85, 10 643.
Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates.CrossRef | 1:CAS:528:DC%2BC3sXhs1OkurnP&md5=06728bb042b93ebcf1baba0668ea8bf5CAS | open url image1

[4]  K. Tiede, A. B. A. Boxall, X. Wang, D. Gore, D. Tiede, M. Baxter, H. David, S. P. Tear, J. Lewis, Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. J. Anal. At. Spectrom. 2010, 25, 1149.
Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge.CrossRef | 1:CAS:528:DC%2BC3cXnvVSjs7o%3D&md5=c8248493cdfd4364934aac2c0b61f871CAS | open url image1

[5]  K. Tiede, A. B. A. Boxall, D. Tiede, S. P. Tear, H. David, J. Lewis, A robust size-characterisation methodology for studying nanoparticle behaviour in ‘real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J. Anal. At. Spectrom. 2009, 24, 964.
A robust size-characterisation methodology for studying nanoparticle behaviour in ‘real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS.CrossRef | 1:CAS:528:DC%2BD1MXns1Slt78%3D&md5=2278c2cb21bd8c913e8fd0c87d1b47a9CAS | open url image1

[6]  R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, K. J. Wilkinson, Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 2009, 43, 7277.
Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes.CrossRef | 1:CAS:528:DC%2BD1MXlt1Sgsbw%3D&md5=4d8c462ebf85e0991b1c816166c5abe1CAS | 19848134PubMed | open url image1

[7]  R. Kaegi, A. Voegelin, C. Ort, B. Sinnet, B. Thalmann, J. Krismer, H. Hagendorfer, M. Elumelu, E. Mueller, Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 2013, 47, 3866.
Fate and transformation of silver nanoparticles in urban wastewater systems.CrossRef | 1:CAS:528:DC%2BC3sXlsVGhtLs%3D&md5=32518d69c9d9a270826a2c5b72f87cdbCAS | 23571111PubMed | open url image1

[8]  H. Weinberg, A. Galyean, M. Leopold, Evaluating engineered nanoparticles in natural waters. TRAC – Trends in Analytical Chemistry. 2011, 30, 72.
Evaluating engineered nanoparticles in natural waters.CrossRef | 1:CAS:528:DC%2BC3cXhsF2mt7jE&md5=439ef2ab80e67242af20d2550cf4b28dCAS | open url image1

[9]  S. A. Cumberland, J. R. Lead, Particle size distributions of silver nanoparticles at environmentally relevant conditions. J. Chromatogr. A 2009, 1216, 9099.
Particle size distributions of silver nanoparticles at environmentally relevant conditions.CrossRef | 1:CAS:528:DC%2BD1MXhsFSgsbvM&md5=158b224a35cfc215e0ec010da838713fCAS | 19647834PubMed | open url image1

[10]  T. J. Cho, V. A. Hackley, Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV-Vis detection. Anal. Bioanal. Chem. 2010, 398, 2003.
Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV-Vis detection.CrossRef | 1:CAS:528:DC%2BC3cXhtVygs7vJ&md5=a71e894cbd213f9a1fce72048fafe1e1CAS | 20803340PubMed | open url image1

[11]  M. E. Hoque, K. Khosravi, K. Newman, C. D. Metcalfe, Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. J. Chromatogr. A 2012, 1233, 109.
Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BC38Xkt1Cnt7s%3D&md5=fa07936c3b8ac9c5b5433d5f2f798c4aCAS | 22381889PubMed | open url image1

[12]  E. P. Gray, T. A. Bruton, C. P. Higgins, R. U. Halden, P. Westerhoff, J. F. Ranville, Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1532.
Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS.CrossRef | 1:CAS:528:DC%2BC38XhtFOnu77O&md5=8d8f2ca8e84ec08d5b7d9d4b0dfff658CAS | open url image1

[13]  A. M. Striegel, A. K. Brewer, Hydrodynamic chromatography. Annu. Rev. Anal. Chem. 2012, 5, 15.
Hydrodynamic chromatography.CrossRef | 1:CAS:528:DC%2BC38Xht1GmtLvN&md5=b248f0de25dad0b89970936ebbc153feCAS | open url image1

[14]  K. J. Wilkinson, J. R. Lead (Eds), Environmental Colloids and Particles: Behaviour, Structure, and Characterisation 2007 (Wiley: Chichester, UK).

[15]  I. Perevyazko, A. Vollrath, S. Hornig, G. M. Pavlov, U. S. Schubert, Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy. J. Polym. Sci. A Polym. Chem. 2010, 48, 3924.
Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy.CrossRef | 1:CAS:528:DC%2BC3cXpvFSktbw%3D&md5=f23308d34dd654d1ae078990fd6659deCAS | open url image1

[16]  K. L. Planken, H. Colfen, Analytical ultracentrifugation of colloids. Nanoscale. 2010, 2, 1849.
Analytical ultracentrifugation of colloids.CrossRef | 1:CAS:528:DC%2BC3cXhtl2nu7fM&md5=3f4b5e3563a52605397ec3b4d143dc37CAS | 20820642PubMed | open url image1

[17]  A. Bootz, V. Vogel, D. Schubert, J. Kreuter, Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004, 57, 369.
Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles.CrossRef | 1:CAS:528:DC%2BD2cXhslWlu7g%3D&md5=862bb2ec6ba2c978652e7aab07b4c83fCAS | 15018998PubMed | open url image1

[18]  F. Laborda, J. Jimenez-Lamana, E. Bolea, J. R. Castillo, Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011, 26, 1362.
Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXnvVaqtro%3D&md5=573f705c12ca8eb90989c17d60dc11d3CAS | open url image1

[19]  C. Degueldre, P. Y. Favarger, Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf. A Physicochem. Eng. Asp. 2003, 217, 137.
Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study.CrossRef | 1:CAS:528:DC%2BD3sXjsVWhurk%3D&md5=5cca14f0ea5faf80356a6364d532d449CAS | open url image1

[20]  M. Hadioui, C. Peyrot, K. J. Wilkinson, Improvements to single particle ICP-MS by the on-line coupling of ion exchange resins. Anal. Chem. 2014, 86, 4668.
Improvements to single particle ICP-MS by the on-line coupling of ion exchange resins.CrossRef | 1:CAS:528:DC%2BC2cXmsVGlu78%3D&md5=2ebb5f2bb6b95ab80e948efa62e917c1CAS | 24745850PubMed | open url image1

[21]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, E. P. Gray, C. P. Higgins, J. F. Ranville, Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 2012, 46, 12 272.
Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size.CrossRef | 1:CAS:528:DC%2BC38XpvFehu7g%3D&md5=2c959666a930cc02c7505c4a3ade3decCAS | open url image1

[22]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, J. F. Ranville, Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 9361.
Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXhsVCrsLvO&md5=d3106fbeaa0633f88e64814967a64db4CAS | 22074486PubMed | open url image1

[23]  D. M. Mitrano, E. K. Lesher, A. Bednar, J. Monserud, C. P. Higgins, J. F. Ranville, Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem. 2012, 31, 115.
Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXhs1yktr7E&md5=9234fb3e71b09355b5b281b35d380b3dCAS | 22012920PubMed | open url image1

[24]  B. Franze, I. Strenge, C. Engelhard, Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles. J. Anal. At. Spectrom. 2012, 27, 1074.
Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC38XosFSksb4%3D&md5=f2cef28056b5117f09af89e81bded468CAS | open url image1

[25]  D. Mahl, J. Diendorf, W. Meyer-Zaika, M. Epple, Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 377, 386.
Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles.CrossRef | 1:CAS:528:DC%2BC3MXisVKqtL8%3D&md5=1aba8d1413c753177594a162f1d849d6CAS | open url image1

[26]  J. W. Dolan, Why do Peaks Tail? 2003 (BASi Northwest Laboratory: McMinnville, OR, USA). Available at http://www.chromatographyonline.com/lcgc/data/articlestandard/lcgceurope/382003/69793/article.pdf [Verified 6 June 2014].

[27]  L. R. Snyder, J. J. Kirkland, J. L. Glajch, Practical HPLC Method Development 1997 (Wiley: New York).

[28]  H. Small, M. A. Langhorst, Hydrodynamic chromatography. Anal. Chem. 1982, 54, 892A.
Hydrodynamic chromatography.CrossRef | 1:CAS:528:DyaL38XksVCrsLo%3D&md5=3b25ba0a99f2f64db6625c161bfeafdfCAS | open url image1

[29]  J. R. Lead, K. J. Wilkinson, S. Balnois, B. J. Cutak, C. K. Larive, S. Assemi, R. Beckett, Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation. Environ. Sci. Technol. 2000, 34, 3508.
Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation.CrossRef | 1:CAS:528:DC%2BD3cXks1Wgurs%3D&md5=8f88bb7bf61017aa91057db803764a13CAS | open url image1

[30]  J. R. Lead, K. J. Wilkinson, Aquatic colloids and nanoparticles: current knowledge and future trends. Environ. Chem. 2006, 3, 159.
Aquatic colloids and nanoparticles: current knowledge and future trends.CrossRef | 1:CAS:528:DC%2BD28Xms1ersL0%3D&md5=f74241c0b96f561140b9a29645c4cd0fCAS | open url image1

[31]  M. Hadioui, S. Leclerc, K. J. Wilkinson, Multimethod quantification of Ag+ release from nanosilver. Talanta 2013, 105, 15.
Multimethod quantification of Ag+ release from nanosilver.CrossRef | 1:CAS:528:DC%2BC3sXmt1WjurY%3D&md5=a2cd9d269a709af1c2d216816cd619e6CAS | 23597981PubMed | open url image1

[32]  J. Tuoriniemi, G. Cornelis, M. Hassellov, Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal. Chem. 2012, 84, 3965.
Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC38XltVyrsr4%3D&md5=db0f4db85739ea46a260f418e658aab0CAS | 22483433PubMed | open url image1


Full Text PDF (602.5 KB) Export Citation