Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Factors affecting arsenic and uranium removal with zero-valent iron: laboratory tests with Kanchan-type iron nail filter columns with different groundwaters

Christine B. Wenk A B , Ralf Kaegi A and Stephan J. Hug A C

A Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.

B Present address: Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100 Rehovot, Israel.

C Corresponding author. Email: stephan.hug@eawag.ch

Environmental Chemistry 11(5) 547-557 http://dx.doi.org/10.1071/EN14020
Submitted: 22 January 2014  Accepted: 25 May 2014   Published: 25 September 2014

Environmental context. Tens of millions of people worldwide depend on groundwater with naturally high arsenic concentrations for drinking and cooking. We studied simple filters built with locally available and inexpensive iron nails, which can oxidise and bind arsenic in forming iron oxides and rust layers. Filters containing iron are being successfully applied in several regions, but efficiencies depend on the type of groundwater, and sufficiently large iron surfaces and contact times with water are needed for good arsenic removal.

Abstract. Zero-valent iron (ZVI)-based filters are able to remove arsenic and other pollutants from drinking water, but their performance depends on the form of ZVI, filter design, water composition and operating conditions. Kanchan filters use an upper bucket with ZVI in the form of commercial iron nails, followed by a sand filter, to remove arsenic and pathogens. We evaluated factors that influence the removal of arsenic and uranium with laboratory columns containing iron nails with six different synthetic groundwaters with 500 μg L–1 AsIII, 50 μg L–1 U, 2 mg L–1 B, and with 0 and 2 mg L–1 P (added as o-phosphate), 0.25 and 2.5 mM Ca, 3.2 and 8.3 mM HCO3, at pH 7.0 and 8.4 over 30 days. During the first 10 days, As removal was 65–95 % and strongly depended on the water composition. As removal at pH 7.0 was better than at pH 8.4 and high P combined with low Ca decreased As removal. From 10–30 days, As removal decreased to 45–60 % with all columns. Phosphate, in combination with low Ca concentrations lowered As removal, but had a slightly positive effect in combination with high Ca concentrations. U removal was only 10–70 %, but showed similar trends. The drop in performance over time can be explained by decreasing release of iron to solution due to formation of layers of FeIII phases and calcite covering the iron surface. Mobile corrosion products contained ferrihydrite, Si-containing hydrous ferric oxides, and amorphous Fe–Si–P phases. Comparisons with another type of ZVI filter (SONO-filter) were used to evaluate filter design parameters. Higher ZVI surface areas and longer contact times should lead to satisfactory As removal with Kanchan-type filters.

Additional keywords: arsenic removal, Kanchan-filter.


References

[1]  L. Charlet, D. A. Polya, Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements 2006, 2, 91.
Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster.CrossRef | open url image1

[2]  M. Amini, K. C. Abbaspour, M. Berg, L. Winkel, S. J. Hug, E. Hoehn, H. Yang, C. A. Johnson, Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 2008, 42, 3669.
Statistical modeling of global geogenic arsenic contamination in groundwater.CrossRef | 1:CAS:528:DC%2BD1cXks1OnsLs%3D&md5=15845cac8000e11926db0f715e6d85c1CAS | 18546706PubMed | open url image1

[3]  L. Winkel, M. Berg, M. Amini, S. J. Hug, C. A. Johnson, Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 2008, 1, 536.
Predicting groundwater arsenic contamination in Southeast Asia from surface parameters.CrossRef | 1:CAS:528:DC%2BD1cXptFOqsbs%3D&md5=a051531b43bbcd4a0d53a90e8423fc2bCAS | open url image1

[4]  L. Rodriguez-Lado, G. Sun, M. Berg, Q. Zhang, H. Xue, Q. Zheng, C. A. Johnson, Groundwater arsenic contamination throughout China. Science 2013, 341, 866.
Groundwater arsenic contamination throughout China.CrossRef | 1:CAS:528:DC%2BC3sXht12gsL7I&md5=be4c4520ed05510daff45a46d1d9b4e3CAS | 23970694PubMed | open url image1

[5]  A. H. Smith, P. A. Lopipero, M. N. Bates, C. M. Steinmaus, Public health – arsenic epidemiology and drinking water standards. Science 2002, 296, 2145.
Public health – arsenic epidemiology and drinking water standards.CrossRef | 1:CAS:528:DC%2BD38XkvFGhs7s%3D&md5=da3e94fafcc86716c43ef8bd216e8bdcCAS | 12077388PubMed | open url image1

[6]  J. C. Ng, J. P. Wang, A. Shraim, A global health problem caused by arsenic from natural sources. Chemosphere 2003, 52, 1353.
A global health problem caused by arsenic from natural sources.CrossRef | 1:CAS:528:DC%2BD3sXlsVWksLw%3D&md5=fd8b01aac6be62926af50273d0751c1aCAS | 12867164PubMed | open url image1

[7]  A. Mukherjee, M. K. Sengupta, M. A. Hossain, S. Ahamed, B. Das, B. Nayak, D. Lodh, M. M. Rahman, D. Chakraborti, Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J. Health Popul. Nutr. 2006, 24, 142.
| 17195556PubMed | open url image1

[8]  S. Murcott, Arsenic Contamination in the World. An International Sourcebook 2012 (IWA Publishing: London).

[9]  M. F. Ahmed, S. Ahuja, M. Alauddin, S. J. Hug, J. R. Lloyd, A. Pfaff, T. Pichler, C. Saltikov, M. Stute, A. van Geen, Epidemiology – ensuring safe drinking water in Bangladesh. Science 2006, 314, 1687.
Epidemiology – ensuring safe drinking water in Bangladesh.CrossRef | 1:CAS:528:DC%2BD28XhtleqsrbI&md5=ca072ede7ef99c9479f0436aae7c130fCAS | 17170279PubMed | open url image1

[10]  D. Mohan, C. U. Pittman, Arsenic removal from water/wastewater using adsorbents – a critical review. J. Hazard. Mater. 2007, 142, 1.
Arsenic removal from water/wastewater using adsorbents – a critical review.CrossRef | 1:CAS:528:DC%2BD2sXjtVejtro%3D&md5=1b9b31121995bcb878c24b24d4259165CAS | 17324507PubMed | open url image1

[11]  R. B. Johnston, S. Hanchett, M. H. Khan, The socio-economics of arsenic removal. Nat. Geosci. 2010, 3, 2.
The socio-economics of arsenic removal.CrossRef | 1:CAS:528:DC%2BD1MXhs1SlurfI&md5=285280f8ef7b5559d405e09af4aeb8ddCAS | open url image1

[12]  A. K. Sharma, J. C. Tjell, J. J. Sloth, P. E. Holm, Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Appl. Geochem. 2014, 41, 11.
Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas.CrossRef | 1:CAS:528:DC%2BC2cXhs1Clsrc%3D&md5=6353904226b751a1ff19c5d90592ef61CAS | open url image1

[13]  P. Mondal, S. Bhowmick, D. Chatterjee, A. Figoli, B. Van der Bruggen, Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Chemosphere 2013, 92, 157.
Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions.CrossRef | 1:CAS:528:DC%2BC3sXjsFCgsrY%3D&md5=66d11c817ee6b0d4d192ac502d1d49a8CAS | 23466274PubMed | open url image1

[14]  J. Inauen, M. M. Hossain, R. B. Johnston, H. J. Mosler, Acceptance and use of eight arsenic-safe drinking water options in Bangladesh. PLoS ONE 2013, 8. open url image1

[15]  M. I. Litter, M. E. Morgada, J. Bundschuh, Possible treatments for arsenic removal in Latin American waters for human consumption. Environ. Pollut. 2010, 158, 1105.
Possible treatments for arsenic removal in Latin American waters for human consumption.CrossRef | 1:CAS:528:DC%2BC3cXmt1Knt74%3D&md5=1e0436e7d0409576c853bfdd895f1a27CAS | 20189697PubMed | open url image1

[16]  M. Berg, S. Luzi, P. T. K. Trang, P. H. Viet, W. Giger, D. Stuben, Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environ. Sci. Technol. 2006, 40, 5567.
Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits.CrossRef | 1:CAS:528:DC%2BD28XmvFKrtLw%3D&md5=e92f8e7f204e6e53280fe46926d7be8dCAS | 16999141PubMed | open url image1

[17]  R. Tobias, M. Berg, Sustainable use of arsenic-removing sand filters in Vietnam: psychological and social factors. Environ. Sci. Technol. 2011, 45, 3260.
Sustainable use of arsenic-removing sand filters in Vietnam: psychological and social factors.CrossRef | 1:CAS:528:DC%2BC3MXjvVejtLo%3D&md5=ba22f4ebad57b6d8aaea626618ee2390CAS | 21443220PubMed | open url image1

[18]  S. J. Hug, O. X. Leupin, M. Berg, Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation. Environ. Sci. Technol. 2008, 42, 6318.
Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation.CrossRef | 1:CAS:528:DC%2BD1cXhtVCiu7rF&md5=a88ac776e286192ab0272d46d88733eaCAS | 18800496PubMed | open url image1

[19]  N. Melitas, M. Conklin, J. Farrell, Electrochemical study of arsenate and water reduction on iron media used for arsenic removal from potable water. Environ. Sci. Technol. 2002, 36, 3188.
Electrochemical study of arsenate and water reduction on iron media used for arsenic removal from potable water.CrossRef | 1:CAS:528:DC%2BD38Xkt12ks78%3D&md5=807c2e2fc332f8753f8f806bbe71112fCAS | 12141502PubMed | open url image1

[20]  O. X. Leupin, S. J. Hug, Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 2005, 39, 1729.
Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron.CrossRef | 1:CAS:528:DC%2BD2MXkt1agsbo%3D&md5=fcb72adc2a6544ce5d36a4fa7604be67CAS | 15899271PubMed | open url image1

[21]  Z. Q. Cheng, A. Van Geen, R. Louis, N. Nikolaidis, R. Bailey, Removal of methylated arsenic in groundwater with iron filings. Environ. Sci. Technol. 2005, 39, 7662.
Removal of methylated arsenic in groundwater with iron filings.CrossRef | 1:CAS:528:DC%2BD2MXptVCms74%3D&md5=9496cbf3cd47ad96faefaf914be8009aCAS | open url image1

[22]  N. P. Nikolaidis, Z. Q. Cheng, A. van Geen, Removal of arsenic from Bangladesh groundwater with zero-valent iron. ACS Symp. Ser. 2005, 915, 361.
Removal of arsenic from Bangladesh groundwater with zero-valent iron.CrossRef | 1:CAS:528:DC%2BD2MXhtFOrurfF&md5=d5ef7d4e6509446408aa4eabc1e77434CAS | open url image1

[23]  O. X. Leupin, S. J. Hug, A. B. M. Badruzzaman, Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ. Sci. Technol. 2005, 39, 8032.
Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand.CrossRef | 1:CAS:528:DC%2BD2MXpvVSitr8%3D&md5=5c30e6e19974773b695f34085425ffcfCAS | 16295871PubMed | open url image1

[24]  M. A. Abedin, T. Katsumi, T. Inui, M. Kamon, Arsenic removal from contaminated groundwater by zero valent iron: a mechanistic and long-term performance study. Soil Found. 2011, 51, 369.
Arsenic removal from contaminated groundwater by zero valent iron: a mechanistic and long-term performance study.CrossRef | open url image1

[25]  A. R. Rahmani, H. R. Ghaffari, M. T. Samadi, A comparative study on arsenic(III) removal from aqueous solution using nano and micro sized zero-valent iron. Iran. J. Environ. Health Sci. Eng. 2011, 8, 175.
| 1:CAS:528:DC%2BC38Xlt1Gqs74%3D&md5=0864f407bed686603326db1d0de0345bCAS | open url image1

[26]  O. J. Flores, J. L. Nava, G. Carreno, E. Elorza, F. Martinez, Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor. Chem. Eng. Sci. 2013, 97, 1.
Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor.CrossRef | 1:CAS:528:DC%2BC3sXptFGgtrg%3D&md5=98275699ee3c5b4b62c5efbdd437781cCAS | open url image1

[27]  N. C. Choi, S. B. Kim, S. O. Kim, J. W. Lee, J. B. Park, Removal of arsenate and arsenite from aqueous solution by waste cast iron. J. Environ. Sci. 2012, 24, 589.
Removal of arsenate and arsenite from aqueous solution by waste cast iron.CrossRef | 1:CAS:528:DC%2BC38Xos1Oltrw%3D&md5=ab2068dfbd8ac3384e11f1d54e6f9d69CAS | open url image1

[28]  L. Li, C. M. van Genuchten, S. E. A. Addy, J. J. Yao, N. Y. Gao, A. J. Gadgil, Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater. Environ. Sci. Technol. 2012, 46, 12038.
Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.CrossRef | 1:CAS:528:DC%2BC38XhtlGhsLzF&md5=5bddaf1e0cd1a569dd4fd0e66b2f8b6aCAS | 22978489PubMed | open url image1

[29]  C. M. van Genuchten, S. E. A. Addy, J. Pena, A. J. Gadgil, Removing arsenic from synthetic groundwater with iron electrocoagulation: An Fe and As K-Edge EXAFS study. Environ. Sci. Technol. 2012, 46, 986.
Removing arsenic from synthetic groundwater with iron electrocoagulation: An Fe and As K-Edge EXAFS study.CrossRef | 1:CAS:528:DC%2BC3MXhsFCms7zK&md5=f6cd26b00c4a13eacee4fdda9a856a45CAS | 22132945PubMed | open url image1

[30]  S. Amrose, A. Gadgil, V. Srinivasan, K. Kowolik, M. Muller, J. Huang, R. Kostecki, Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2013, 48, 1019.
Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.CrossRef | 1:CAS:528:DC%2BC3sXlsl2nsrg%3D&md5=420f68137b00cad97dc4f9785475f16bCAS | 23573922PubMed | open url image1

[31]  C. Noubactep, E. Temgoua, M. A. Rahman, Designing iron-amended biosand filters for decentralized safe drinking water provision. Clean – Soil, Air, Water 2012, 40, 798.
Designing iron-amended biosand filters for decentralized safe drinking water provision.CrossRef | 1:CAS:528:DC%2BC38Xps1Wjtr4%3D&md5=fa2fcf086bf4ad473a5962e370b5c647CAS | open url image1

[32]  A. Hussam, A. K. M. Munir, A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2007, 42, 1869.
A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh.CrossRef | 1:CAS:528:DC%2BD2sXhtFykur%2FI&md5=b9278793b99bf1f2a5eb0157a63868ceCAS | 17952788PubMed | open url image1

[33]  T. K. K. Ngai, R. R. Shrestha, B. Dangol, M. Maharjan, S. E. Murcott, Design for sustainable development – Household drinking water filter for arsenic and pathogen treatment in Nepal. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2007, 42, 1879.
Design for sustainable development – Household drinking water filter for arsenic and pathogen treatment in Nepal.CrossRef | 1:CAS:528:DC%2BD2sXhtFykur%2FJ&md5=400d675e8a816b3d15ed73ed10c51594CAS | open url image1

[34]  T. K. K. Ngai, S. Murcott, R. R. Shrestha, B. Dangol, M. Maharjan, Development and dissemination of KanchanTM arsenic filter in rural Nepal. Water, Sci. & Technol. 2006, 6, 137. open url image1

[35]  H. Chiew, M. L. Sampson, S. Huch, S. Ken, B. C. Bostick, Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended biosand filters. Environ. Sci. Technol. 2009, 43, 6295.
Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended biosand filters.CrossRef | 1:CAS:528:DC%2BD1MXos1Ogu7g%3D&md5=07f6b6b2b9c2b5f25434dce180e3b1fdCAS | 19746728PubMed | open url image1

[36]  A. Neumann, R. Kaegi, A. Voegelin, A. Hussam, A. K. M. Munir, S. J. Hug, Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environ. Sci. Technol. 2013, 47, 4544.
Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study.CrossRef | 1:CAS:528:DC%2BC3sXlsVGmurs%3D&md5=18b4a405d8f12ef6c05b413a9f8adcfaCAS | 23647491PubMed | open url image1

[37]  M. Shafiquzzaman, M. S. Azam, I. Mishima, J. Nakajima, Technical and social evaluation of arsenic mitigation in rural Bangladesh. J. Health Popul. Nutr. 2009, 27, 674.
Technical and social evaluation of arsenic mitigation in rural Bangladesh.CrossRef | 19902804PubMed | open url image1

[38]  L. C. Roberts, S. J. Hug, T. Ruettimann, M. Billah, A. W. Khan, M. T. Rahman, Arsenic removal with iron(II) and iron(III) waters with high silicate and phosphate concentrations. Environ. Sci. Technol. 2004, 38, 307.
Arsenic removal with iron(II) and iron(III) waters with high silicate and phosphate concentrations.CrossRef | 1:CAS:528:DC%2BD3sXovFOgs7c%3D&md5=204715088dce2eed8ccfb6d227618490CAS | 14740752PubMed | open url image1

[39]  I. A. Katsoyiannis, S. J. Hug, A. Ammann, A. Zikoudi, C. Hatziliontos, Arsenic speciation and uranium concentrations in drinking water supply wells in northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Sci. Total Environ. 2007, 383, 128.
Arsenic speciation and uranium concentrations in drinking water supply wells in northern Greece: correlations with redox indicative parameters and implications for groundwater treatment.CrossRef | 1:CAS:528:DC%2BD2sXnslGisro%3D&md5=1668a23273ed40a6591d8480dec7345fCAS | 17570466PubMed | open url image1

[40]  I. A. Katsoyiannis, A. Zikoudi, S. J. Hug, Arsenic removal from groundwaters containing iron, ammonium, manganese and phosphate: a case study from a treatment unit in northern Greece. Desalination 2008, 224, 330.
Arsenic removal from groundwaters containing iron, ammonium, manganese and phosphate: a case study from a treatment unit in northern Greece.CrossRef | 1:CAS:528:DC%2BD1cXhs1OisbY%3D&md5=8120f96b95293fd25d50a6da117c3d4bCAS | open url image1

[41]  J. Bundschuh, M. I. Litter, F. Parvez, G. Roman-Ross, H. B. Nicolli, J.-S. Jean, C.-W. Liu, D. Lopez, M. A. Armienta, L. R. G. Guilherme, A. Gomez Cuevas, L. Cornejo, L. Cumbal, R. Toujaguez, One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2.
One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries.CrossRef | 1:CAS:528:DC%2BC38Xos1Cnurw%3D&md5=acdce38d3b195e0afdfc585f6ec1263aCAS | 21959248PubMed | open url image1

[42]  S. J. Hug, D. Gaertner, L. C. Roberts, M. Schirmer, T. Ruettimann, T. M. Rosenberg, A. B. M. Badruzzaman, M. A. Ali, Avoiding high concentrations of arsenic, manganese and salinity in deep tubewells in Munshiganj District, Bangladesh. Appl. Geochem. 2011, 26, 1077.
Avoiding high concentrations of arsenic, manganese and salinity in deep tubewells in Munshiganj District, Bangladesh.CrossRef | 1:CAS:528:DC%2BC3MXmsVWrt78%3D&md5=1bfda61eeb9917643b588825fd4b714fCAS | open url image1

[43]  G. A. Wasserman, X. H. Liu, F. Parvez, H. Ahsan, D. Levy, P. Factor-Litvak, J. Kline, A. van Geen, V. Slavkovich, N. J. Lolacono, Z. Q. Cheng, Y. Zheng, J. H. Graziano, Water manganese exposure and children's intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2006, 114, 124.
| 1:CAS:528:DC%2BD28XosVOisQ%3D%3D&md5=be5ee2afe5c09a84140cc49433de7993CAS | 16393669PubMed | open url image1

[44]  W. Stumm, G. F. Lee, Oxygenation of ferrous iron. Ind. Eng. Chem. 1961, 53, 143.
Oxygenation of ferrous iron.CrossRef | 1:CAS:528:DyaF3MXnslymsQ%3D%3D&md5=7853c6426377b2e0ce6bb2c1a92790c9CAS | open url image1

[45]  A. Voegelin, R. Kaegi, J. Frommer, D. Vantelon, S. J. Hug, Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 2010, 74, 164.
Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy.CrossRef | 1:CAS:528:DC%2BD1MXhsVCqsL7F&md5=6715a789dac1aba6e6a49609aef78a86CAS | open url image1

[46]  R. Kaegi, A. Voegelin, D. Folini, S. J. Hug, Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water. Geochim. Cosmochim. Acta 2010, 74, 5798.
Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water.CrossRef | 1:CAS:528:DC%2BC3cXhtFCnsrvP&md5=6cbd2de1a0773c12d86775b8d7a9ba3bCAS | open url image1

[47]  A. Voegelin, A.-C. Senn, R. Kaegi, S. J. Hug, S. Mangold, Dynamic Fe-precipitate formation induced by Fe(II) oxidation in aerated phosphate-containing water. Geochim. Cosmochim. Acta 2013, 117, 216.
Dynamic Fe-precipitate formation induced by Fe(II) oxidation in aerated phosphate-containing water.CrossRef | 1:CAS:528:DC%2BC3sXht1WhurzK&md5=2d3126c7990a86414f9b9afe4d42353aCAS | open url image1

[48]  S. J. Hug, O. Leupin, Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37, 2734.
Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.CrossRef | 1:CAS:528:DC%2BD3sXjslOht7g%3D&md5=806f0934b157171a373dad44592292b2CAS | 12854713PubMed | open url image1

[49]  H. Lee, H. J. Lee, D. L. Sedlak, C. Lee, pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere 2013, 92, 652.
pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide.CrossRef | 1:CAS:528:DC%2BC3sXivFygsLY%3D&md5=3e86cc155ffc88103dadaa52159c03c9CAS | 23433935PubMed | open url image1

[50]  H. Bataineh, O. Pestovsky, A. Bakac, pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem. Sci 2012, 3, 1594.
pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction.CrossRef | 1:CAS:528:DC%2BC38XkvVKqsro%3D&md5=02437e4c59834f17c97d44deb03502f1CAS | open url image1

[51]  S. H. Joo, A. J. Feitz, D. L. Sedlak, T. D. Waite, Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Technol. 2005, 39, 1263.
Quantification of the oxidizing capacity of nanoparticulate zero-valent iron.CrossRef | 1:CAS:528:DC%2BD2cXhtFCiur%2FE&md5=18d617875dbdab13bc02252230903860CAS | 15787365PubMed | open url image1

[52]  C. R. Keenan, D. L. Sedlak, Factors affecting the yield of oxidants from the reaction of nanonarticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42, 1262.
Factors affecting the yield of oxidants from the reaction of nanonarticulate zero-valent iron and oxygen.CrossRef | 1:CAS:528:DC%2BD1cXjt1ejtg%3D%3D&md5=a3f33d90958ba988a3f37e8902f3a728CAS | 18351103PubMed | open url image1

[53]  H. Lee, H.-J. Lee, H.-E. Kim, J. Kweon, B.-D. Lee, C. Lee, Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study. J. Hazard. Mater. 2014, 265, 201.
Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.CrossRef | 1:CAS:528:DC%2BC2cXps1ymuw%3D%3D&md5=4be2a42fa27a2ad4032145e639eb30d7CAS | 24361799PubMed | open url image1

[54]  I. A. Katsoyiannis, T. Ruettimann, S. J. Hug, pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environ. Sci. Technol. 2008, 42, 7424.
pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water.CrossRef | 1:CAS:528:DC%2BD1cXhtVGnurzF&md5=b41958c8107b5328fa862eeb31810fa3CAS | 18939581PubMed | open url image1

[55]  K. Amstaetter, T. Borch, P. Larese-Casanova, A. Kappler, Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 2010, 44, 102.
Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH).CrossRef | 1:CAS:528:DC%2BD1MXht1artbrI&md5=094665af2b901d73dd8f585e995a4fabCAS | 20039739PubMed | open url image1

[56]  J. M. Santana-Casiano, A. Gonzalez-Davila, F. J. Millero, The role of Fe(II) species on the oxidation of Fe(II) in natural waters in the presence of O2 and H2O2. Mar. Chem. 2006, 99, 70.
The role of Fe(II) species on the oxidation of Fe(II) in natural waters in the presence of O2 and H2O2.CrossRef | 1:CAS:528:DC%2BD28XhslKmtL8%3D&md5=aee6267620da5eef0b2b1891ec7de1bbCAS | open url image1

[57]  H. Tamura, S. Kawamura, M. Hagayama, Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides. Corros. Sci. 1980, 20, 963.
Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides.CrossRef | 1:CAS:528:DyaL3MXhtVOnsL8%3D&md5=b5333cde43c678fb1f0baf5130be1a50CAS | open url image1

[58]  X. G. Meng, S. Bang, G. P. Korfiatis, Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 2000, 34, 1255.
Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride.CrossRef | 1:CAS:528:DC%2BD3cXhtlOqtbg%3D&md5=6d7c8da76e8d20cbb9f35ac047d4c57cCAS | open url image1

[59]  X. G. Meng, G. P. Korfiatis, S. B. Bang, K. W. Bang, Combined effects of anions on arsenic removal by iron hydroxides. Toxicol. Lett. 2002, 133, 103.
Combined effects of anions on arsenic removal by iron hydroxides.CrossRef | 1:CAS:528:DC%2BD38XksFKqsbo%3D&md5=30ae941dc39115568fd28b589da347eeCAS | open url image1

[60]  D. Uy, T. Ngai, T. Mahin, C. Samnang, M. Saray, M. Adam, D. Baker, Kanchan arsenic filter: evaluation and applicability to Cambodia (Conference Paper), in Proceedings of the 34th WEDC International Conference, 18–22 May 2009, Addis Ababa, Ethiopia 2009, paper 129. Available at http://wedc.lboro.ac.uk/resources/conference/34/Uy_D_-_129.pdf [Verified 6 August 2014].

[61]  I. A. Katsoyiannis, A. I. Zouboulis, Removal of uranium from contaminated drinking water: a mini review of available treatment methods. Desalin. Water Treat. 2013, 51, 2915.
Removal of uranium from contaminated drinking water: a mini review of available treatment methods.CrossRef | 1:CAS:528:DC%2BC3sXlslWjtr8%3D&md5=936fad12cc2fd17d30103736bac85486CAS | open url image1



Supplementary MaterialSupplementary Material (904 KB) Export Citation Cited By (4)