Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Ligand- and oxygen-isotope-exchange pathways of geochemical interest

William H. Casey
+ Author Affiliations
- Author Affiliations

Department of Chemistry and Department of Geology, University of California, 1 Shields Lane, Davis, CA 95616, USA. Email: whcasey@ucdavis.edu

Environmental Chemistry 12(1) 1-19 https://doi.org/10.1071/EN14043
Submitted: 28 February 2014  Accepted: 27 May 2014   Published: 7 January 2015

Environmental context. Most chemical processes in water are either ligand- or electron-exchange reactions. Here the general reactivity trends for ligand-exchange reactions in aqueous solutions are reviewed and it is shown that simple rules dominate the chemistry. These simple rules shed light on most molecular processes in water, including the uptake and degradation of pesticides, the sequestration of toxic metals and the corrosion of minerals.

Abstract. It is through ligand-exchange kinetics that environmental geochemists establish an understanding of molecular processes, particularly for insulating oxides where there are not explicit electron exchanges. The substitution of ligands for terminal functional groups is relatively insensitive to small changes in structure but are sensitive to bond strengths and acid–base chemistry. Ligand exchanges involving chelating organic molecules are separable into two classes: (i) ligand substitutions that are enhanced by the presence of the chelating ligand, called a ‘spectator’ ligand and (ii) chelation reactions themselves, which are controlled by the Lewis basicity of the attacking functional group and the rates of ring closure. In contrast to this relatively simple chemistry at terminal functional groups, substitutions at bridging oxygens are exquisitely sensitive to details of structure. Included in this class are oxygen-isotope exchange and mineral-dissolution reactions. In large nanometer-sized ions, metastable structures form as intermediates by detachment of a surface metal atom, often from a underlying, highly coordinated oxygen, such as μ4-oxo, by solvation forces. A metastable equilibrium is then established by concerted motion of many atoms in the structure. The newly undercoordinated metal in the intermediate adds a water or ligand from solution, and protons transfer to other oxygens in the metastable structure, giving rise to a characteristic broad amphoteric chemistry. These metastable structures have an appreciable lifetime and require charge separation, which is why counterions affect the rates. The number and character of these intermediate structures reflect the symmetry of the starting structure.


References

[1]  D. W. Margerum, G. R. Cayley, D. C. Weatherburn, G. K. Pagenkopf, Kinetics and mechanisms of complex formation and ligand exchange. ACS Mono. 1978, 174, 1.
| 1:CAS:528:DyaE1cXks1GqsbY%3D&md5=4758ec6d39fd3f71fb9c8e0608d31fdeCAS | open url image1

[2]  T. W. Swaddle, Ligand substitution dynamics in metal complexes, in Physical Inorganic Chemistry: Reactions, Processes and Applications (Ed. A. Bakac) 2010, pp. 339–393 (Wiley: Hoboken, NJ).

[3]  T. W. Swaddle, J. Rosenqvist, P. Yu, E. Bylaska, B. L. Phillips, W. H. Casey, Kinetic evidence for five-coordination in AlOH(aq)2+ ion. Science 2005, 308, 1450.
Kinetic evidence for five-coordination in AlOH(aq)2+ ion.CrossRef | 1:CAS:528:DC%2BD2MXks1eqsb0%3D&md5=c9bc3b4ad8a627bda562c5eff8fc67e7CAS | 15860592PubMed | open url image1

[4]  S. D. Kinrade, J. W. Del Nin, A. S. Schach, T. A. Sloan, K. L. Wilson, C. T. G. Knight, Stable five- and six-coordinated silicate anions in aqueous solution. Science 1999, 285, 1542.
Stable five- and six-coordinated silicate anions in aqueous solution.CrossRef | 1:CAS:528:DyaK1MXlslOrsbg%3D&md5=e2522247948068c856d565b4bb47763eCAS | 10477513PubMed | open url image1

[5]  A. F. Panasci, C. A. Ohlin, S. J. Harley, W. H. Casey, Rates of water exchange on the [Fe4(OH)2(hpdta)2(H2O)4]0 molecule and its implications for geochemistry. Inorg. Chem. 2012, 51, 6731.
Rates of water exchange on the [Fe4(OH)2(hpdta)2(H2O)4]0 molecule and its implications for geochemistry.CrossRef | 1:CAS:528:DC%2BC38XotFGmur0%3D&md5=dc4ec9c70a8dd11721cce5ea384c8f08CAS | 22671440PubMed | open url image1

[6]  L. Helm, A. E. Merbach, Inorganic and bioinorganic solvent exchange mechanisms. Chem. Rev. 2005, 105, 1923.
Inorganic and bioinorganic solvent exchange mechanisms.CrossRef | 1:CAS:528:DC%2BD2MXivV2msrg%3D&md5=c660c623cfcd3a6c6af714895e17683dCAS | 15941206PubMed | open url image1

[7]  D. T. Richens, Ligand substitution reactions at inorganic centers. Chem. Rev. 2005, 105, 1961.
Ligand substitution reactions at inorganic centers.CrossRef | 1:CAS:528:DC%2BD2MXjtFartLo%3D&md5=b1266de00aeb6f46d83813b211882504CAS | 15941207PubMed | open url image1

[8]  D. T. Richens, The Chemistry of Aqua Ions 1997 (Wiley: New York).

[9]  L. Helm, G. M. Nicolle, A. E. Merbach, Water and proton exchange processes on metal ions. Adv. Inorg. Chem. 2005, 57, 327.
| 1:CAS:528:DC%2BD2MXktVSktbc%3D&md5=443d613c5c25bbcd02370122a39b6ce7CAS | open url image1

[10]  A. G. Stack, P. Raiteri, J. D. Gale, Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories. J. Am. Chem. Soc. 2012, 134, 11.
Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories.CrossRef | 1:CAS:528:DC%2BC3MXptVSlurg%3D&md5=8e46f364a253e8f6ea1525f680d5a39bCAS | 21721566PubMed | open url image1

[11]  J. Wang, J. R. Rustad, W. H. Casey, Calculation of water-exchange rates on aqueous polynuclear clusters and at oxide-water interfaces. Inorg. Chem. 2007, 46, 2962.
Calculation of water-exchange rates on aqueous polynuclear clusters and at oxide-water interfaces.CrossRef | 1:CAS:528:DC%2BD2sXislens7Y%3D&md5=755cc429f7fe98cfa567aae96a8f602bCAS | 17355130PubMed | open url image1

[12]  R. J. Evans, J. R. Rustad, W. H. Casey, Calculating geochemical reaction pathways – exploration of the inner-sphere water exchange mechanism in Al(H2O)63+(aq) + nH2O with ab initio calculations and molecular dynamics. J. Phys. Chem. A 2008, 112, 4125.
Calculating geochemical reaction pathways – exploration of the inner-sphere water exchange mechanism in Al(H2O)63+(aq) + nH2O with ab initio calculations and molecular dynamics.CrossRef | 1:CAS:528:DC%2BD1cXjslahtrw%3D&md5=cf7daaaf8e1fa675d0f62bb8ce8f048eCAS | 18366199PubMed | open url image1

[13]  F. P. Rotzinger, Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods. Chem. Rev. 2005, 105, 2003.
Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods.CrossRef | 1:CAS:528:DC%2BD2MXjslKmu7o%3D&md5=8506b701bdae1c723e33ef18bc47e884CAS | 15941208PubMed | open url image1

[14]  E. Balogh, et al. Rates of ligand exchange between >FeIII-OH2 functional groups on a nanometer-size aqueous cluster and bulk solution. Inorg. Chem. 2007, 46, 7087.
Rates of ligand exchange between >FeIII-OH2 functional groups on a nanometer-size aqueous cluster and bulk solution.CrossRef | 1:CAS:528:DC%2BD2sXot1ahtr8%3D&md5=5705965abf33b8945190a41a683e2d60CAS | 17661461PubMed | open url image1

[15]  D. Lieb, et al. Water exchange reactivity and stability of cobalt polyoxometalates under catalytically relevant pH conditions: insight into water oxidation catalysis. Inorg. Chem. 2011, 50, 9053.
Water exchange reactivity and stability of cobalt polyoxometalates under catalytically relevant pH conditions: insight into water oxidation catalysis.CrossRef | 1:CAS:528:DC%2BC3MXpslWrsbs%3D&md5=7e881f911c5c4ac7aeb1fa2f2991206fCAS | 21809868PubMed | open url image1

[16]  C. A. Ohlin, et al. Rates of water exchange for two cobalt(II) heteropolyoxotungstate compounds in aqueous solution. Chemistry 2011, 17, 4408.
Rates of water exchange for two cobalt(II) heteropolyoxotungstate compounds in aqueous solution.CrossRef | 1:CAS:528:DC%2BC3MXktFGktr8%3D&md5=f140857284f6d027f87b374df46633cfCAS | 21416515PubMed | open url image1

[17]  T. W. Swaddle, A. E. Merbach, High-pressure oxygen-17 Fourier transform nuclear magnetic resonance spectroscopy. Mechanism of water exchange on iron(III) in acidic aqueous solution. Inorg. Chem. 1981, 20, 4212.
High-pressure oxygen-17 Fourier transform nuclear magnetic resonance spectroscopy. Mechanism of water exchange on iron(III) in acidic aqueous solution.CrossRef | 1:CAS:528:DyaL3MXmtFSntrs%3D&md5=f15ca6a3212948c4f4b229a0ad5241f2CAS | open url image1

[18]  S. F. Lincoln, D. T. Richens, A. G. Sykes, Metal aqua ions. Compr. Coordin. Chem. II 2004, 1, 515.
Metal aqua ions.CrossRef | 1:CAS:528:DC%2BD2cXit1GltA%3D%3D&md5=322e9121a2aacbc3a08d893ae6a4e408CAS | open url image1

[19]  L. Spiccia, W. H. Casey, Synthesis of experimental models for molecular inorganic geochemistry – a review with examples. Geochim. Cosmochim. Acta 2007, 71, 5590.
Synthesis of experimental models for molecular inorganic geochemistry – a review with examples.CrossRef | 1:CAS:528:DC%2BD2sXhtlWnsr3M&md5=a200363e950b847d734e997d8079e896CAS | open url image1

[20]  L. Spiccia, Homopolynuclear and heteropolynuclear Rh(III) aqua ions – a review. Inorg. Chim. Acta 2004, 357, 2799.
Homopolynuclear and heteropolynuclear Rh(III) aqua ions – a review.CrossRef | 1:CAS:528:DC%2BD2cXlslKhu7k%3D&md5=e7f4c9083f9a59291792d119a5ef8364CAS | open url image1

[21]  S. J. Crimp, et al. Synthesis and characterization of rhodium(III)-chromium(III) heterotrinuclear aqua ions. J. Chem. Soc., Dalton Trans. 1998, 375.
Synthesis and characterization of rhodium(III)-chromium(III) heterotrinuclear aqua ions.CrossRef | 1:CAS:528:DyaK1cXhsFWlsLk%3D&md5=508f26a2571cab341a744531d8f099cdCAS | open url image1

[22]  L. Spiccia, et al. Hydrolytic polymerization of rhodium(III). Characterization of various forms of a trinuclear aqua ion. J. Chem. Soc., Dalton Trans. 1997, 4603.
Hydrolytic polymerization of rhodium(III). Characterization of various forms of a trinuclear aqua ion.CrossRef | 1:CAS:528:DyaK2sXnsFenu7Y%3D&md5=c005a1ff6263dd256a015c052a5328fbCAS | open url image1

[23]  A. Drljaca, et al. Kinetics of water exchange on the hydrolytic doubly hydroxo-bridged rhodium(III) dimer. Inorg. Chem. 1996, 35, 985.
Kinetics of water exchange on the hydrolytic doubly hydroxo-bridged rhodium(III) dimer.CrossRef | 1:CAS:528:DyaK28XmtFeisQ%3D%3D&md5=f02df832edf4ca7fe5db5e85aa3b5bb4CAS | 11666274PubMed | open url image1

[24]  A. Drljaca, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution – XII. Kinetics of cleavage of the trimer and tetramer in acidic solution. Polyhedron 1996, 15, 4373.
Early stages of the hydrolysis of chromium(III) in aqueous solution – XII. Kinetics of cleavage of the trimer and tetramer in acidic solution.CrossRef | 1:CAS:528:DyaK28XmsVCqs7Y%3D&md5=bb68ad6da49e2a81dab7a5d7768971ccCAS | open url image1

[25]  A. Drljaca, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution-XI. Kinetics of formation of hexamer from trimer and tetramer from monomer and trimer. Polyhedron 1996, 15, 2875.
Early stages of the hydrolysis of chromium(III) in aqueous solution-XI. Kinetics of formation of hexamer from trimer and tetramer from monomer and trimer.CrossRef | open url image1

[26]  S. J. Crimp, L. Spiccia, Kinetic and thermodynamic studies of intramolecular rearrangement and cleavage of the heterobinuclear aqua ion, [(H2O)4Rh(μ-OH)2Cr(OH2)4]4+. J. Chem. Soc., Dalton Trans. 1996, 1051.
Kinetic and thermodynamic studies of intramolecular rearrangement and cleavage of the heterobinuclear aqua ion, [(H2O)4Rh(μ-OH)2Cr(OH2)4]4+.CrossRef | 1:CAS:528:DyaK28XhvVymsbo%3D&md5=8fd0c70ef05059003a67bda828889406CAS | open url image1

[27]  A. Drljaca, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution-X. Kinetics of formation of trimer from monomer and dimer. Polyhedron 1995, 14, 1653.
Early stages of the hydrolysis of chromium(III) in aqueous solution-X. Kinetics of formation of trimer from monomer and dimer.CrossRef | 1:CAS:528:DyaK2MXmtleksLY%3D&md5=5fefa7e97068e042a0973813b265467aCAS | open url image1

[28]  S. J. Crimp, L. Spiccia, Characterization of three active rhodium(III) hydroxides. Aust. J. Chem. 1995, 48, 557.
Characterization of three active rhodium(III) hydroxides.CrossRef | 1:CAS:528:DyaK2MXksFyitbs%3D&md5=83fff167b15efa22cddc45e484c0f576CAS | open url image1

[29]  S. J. Crimp, et al. Early stages of the hydrolysis of chromium(III) in aqueous solution. 9. Kinetics of water exchange on the hydrolytic dimer. Inorg. Chem. 1994, 33, 465.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 9. Kinetics of water exchange on the hydrolytic dimer.CrossRef | 1:CAS:528:DyaK2cXoslOntg%3D%3D&md5=5a5f6f2598583030cd1c958156bb4077CAS | open url image1

[30]  L. Spiccia, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. VI. Kinetics of intramolecular interconversion between singly and doubly bridged hydrolytic dimers. Polyhedron 1991, 10, 619.
Early stages of the hydrolysis of chromium(III) in aqueous solution. VI. Kinetics of intramolecular interconversion between singly and doubly bridged hydrolytic dimers.CrossRef | 1:CAS:528:DyaK3MXisFCksLg%3D&md5=bad3dc4c26e9c93b4fbf5dedd7763452CAS | open url image1

[31]  L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution. 7. Kinetics of cleavage of the hydrolytic dimer in acidic solution. Polyhedron 1991, 10, 1865.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 7. Kinetics of cleavage of the hydrolytic dimer in acidic solution.CrossRef | 1:CAS:528:DyaK38XmvVersQ%3D%3D&md5=d997ce6a0320509443f6bebf2ebed41fCAS | open url image1

[32]  M. R. Grace, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution. VIII. Kinetics of dimerization of deprotonated forms of doubly bridged dimer. Polyhedron 1991, 10, 2389.
Early stages of the hydrolysis of chromium(III) in aqueous solution. VIII. Kinetics of dimerization of deprotonated forms of doubly bridged dimer.CrossRef | 1:CAS:528:DyaK38XksFKrsrc%3D&md5=400bc263b718db6a1cb01307cbb9646cCAS | open url image1

[33]  R. Cervini, G. D. Fallon, L. Spiccia, Hydrolytic polymerization of rhodium(III). 1. Preparation, solution studies, and x-ray structure of the doubly bridged dimer [(H2O)4Rh(μ-OH)2Rh(OH2)4](dmtos)4·8H2O. Inorg. Chem. 1991, 30, 831.
Hydrolytic polymerization of rhodium(III). 1. Preparation, solution studies, and x-ray structure of the doubly bridged dimer [(H2O)4Rh(μ-OH)2Rh(OH2)4](dmtos)4·8H2O.CrossRef | 1:CAS:528:DyaK3MXhtFeqtr4%3D&md5=b910f1ff6ec823fff86367053f1f3e40CAS | open url image1

[34]  H. Stuenzi, L. Spiccia, F. P. Rotzinger, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 4. The stability constants of the hydrolytic dimer, trimer, and tetramer at 25 °C and I = 1.0 M. Inorg. Chem. 1989, 28, 66.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 4. The stability constants of the hydrolytic dimer, trimer, and tetramer at 25 °C and I = 1.0 M.CrossRef | 1:CAS:528:DyaL1MXksF2htg%3D%3D&md5=02d272da2bf2181fa03a60f53120afc7CAS | open url image1

[35]  T. Merakis, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution. V. Measurement of the equilibrium between singly and doubly bridged dimer. Aust. J. Chem. 1989, 42, 1579.
Early stages of the hydrolysis of chromium(III) in aqueous solution. V. Measurement of the equilibrium between singly and doubly bridged dimer.CrossRef | 1:CAS:528:DyaL1MXmsVWns7g%3D&md5=f085496a61f73a2b70206b63ba1230c7CAS | open url image1

[36]  F. P. Rotzinger, H. Stuenzi, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 3. Kinetics of dimerization of the deprotonated aqua ion. Inorg. Chem. 1986, 25, 489.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 3. Kinetics of dimerization of the deprotonated aqua ion.CrossRef | 1:CAS:528:DyaL28Xps1GitA%3D%3D&md5=f4d837737b0997fb60bc82945f63ff97CAS | open url image1

[37]  F. P. Rotzinger, W. Marty, A unified interpretation of kinetic data on the acid-induced cleavage and of product-analysis data on spontaneous cleavage of the mono-ol cation μ-hydroxo-bis[pentaamminecobalt(III)]([(NH3)5CoOHCo(NH3)5]5+). Helv. Chim. Acta 1985, 68, 1914.
A unified interpretation of kinetic data on the acid-induced cleavage and of product-analysis data on spontaneous cleavage of the mono-ol cation μ-hydroxo-bis[pentaamminecobalt(III)]([(NH3)5CoOHCo(NH3)5]5+).CrossRef | 1:CAS:528:DyaL28XktVGktQ%3D%3D&md5=ee778dcff412a979a4e9f0bd40ef1215CAS | open url image1

[38]  H. Stünzi, F. P. Rotzinger, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 2. Kinetics and mechanism of the interconversion between two tetrameric species. Inorg. Chem. 1984, 23, 2160.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 2. Kinetics and mechanism of the interconversion between two tetrameric species.CrossRef | open url image1

[39]  F. P. Rotzinger, W. Marty, Activated ligand substitution in bridged complexes. 1. Base hydrolysis and structure of (+-)-(m-amido)-cis,cis-tetrakis(1,2-ethanediamine)diamminedicobalt(III) pentanitrate dihydrate. Inorg. Chem. 1983, 22, 3593.
Activated ligand substitution in bridged complexes. 1. Base hydrolysis and structure of (+-)-(m-amido)-cis,cis-tetrakis(1,2-ethanediamine)diamminedicobalt(III) pentanitrate dihydrate.CrossRef | 1:CAS:528:DyaL3sXmtVGjtr4%3D&md5=5d9716fbe3b1e5c523a2d8c8b48cbcc4CAS | open url image1

[40]  A. F. Panasci, J. G. McAlpin, C. A. Ohlin, S. Christensen, J. C. Fettinger, R. D. Britt, J. R. Rustad, W. H. Casey, Cooperation between bound waters and hydroxyls in controlling isotope-exchange rates. Geochim. Cosmochim. Acta 2012, 78, 18.
Cooperation between bound waters and hydroxyls in controlling isotope-exchange rates.CrossRef | 1:CAS:528:DC%2BC38XntFOrsg%3D%3D&md5=cedd6a61e61d74607a135a13a2cdd447CAS | open url image1

[41]  T. W. Swaddle, Silicate complexes of aluminum(III) in aqueous systems. Coord. Chem. Rev. 2001, 219–221, 665.
Silicate complexes of aluminum(III) in aqueous systems.CrossRef | open url image1

[42]  T. W. Swaddle, J. Salerno, P. A. Tregloan, Aqueous aluminates, silicates, and aluminosilicates. Chem. Soc. Rev. 1994, 23, 319.
Aqueous aluminates, silicates, and aluminosilicates.CrossRef | 1:CAS:528:DyaK2MXitVOjsLo%3D&md5=3ca53a6c90c75175e7d3017dc8cbde31CAS | open url image1

[43]  S. J. Brudenell, S. J. Crimp, J. K. E. Higgs, K. Moubaraki, K. S. Murray, L. Spiccia, Binuclear chromium(III) complexes bridged by hydroxide and acetate groups. Inorg. Chim. Acta 1996, 247, 35.
Binuclear chromium(III) complexes bridged by hydroxide and acetate groups.CrossRef | 1:CAS:528:DyaK28Xjt1Snsb8%3D&md5=75a7916f48556a14befe418e076a6db6CAS | open url image1

[44]  M. R. Grace, L. Spiccia, Kinetics of anation of Cr(III) hydrolytic oligomers: reaction of dimer with sulfate. Inorg. Chim. Acta 1993, 213, 103.
Kinetics of anation of Cr(III) hydrolytic oligomers: reaction of dimer with sulfate.CrossRef | 1:CAS:528:DyaK2cXmtlCitg%3D%3D&md5=41446399b3111ab7b8dcd5925b016e26CAS | open url image1

[45]  A. Drljaca, J. R. Anderson, L. Spiccia Turney, Intercalation of montmorillonite with individual chromium(III) hydrolytic oligomers. Inorg. Chem. 1992, 31, 4894.
Intercalation of montmorillonite with individual chromium(III) hydrolytic oligomers.CrossRef | 1:CAS:528:DyaK38XmsVCnu7Y%3D&md5=dd1d9e7a714b08ab4a83288b77fc87a3CAS | open url image1

[46]  S. J. Crimp, G. D. Fallon, L. Spiccia, Synthesis and x-ray structure of a chromium(III)-rhodium(III) heterometallic hydrolytic dimer: [(H2O)4Rh(μ-OH)2Cr(OH2)4](Me3C6H2SO3)44H2O. J. Chem. Soc. Chem. Commun. 1992, 1992, 197.
Synthesis and x-ray structure of a chromium(III)-rhodium(III) heterometallic hydrolytic dimer: [(H2O)4Rh(μ-OH)2Cr(OH2)4](Me3C6H2SO3)44H2O.CrossRef | 4H2O.&title=J. Chem. Soc. Chem. Commun.&date=1992&volume=1992&spage=197&epage=&sid=csiro&aulast=&aufirst=" target="_blank" >open url image1

[47]  L. Spiccia, W. Marty, The fate of active chromium hydroxide, Cr(OH)3·3H2O, in aqueous suspension. Study of the chemical changes involved in its aging. Inorg. Chem. 1986, 25, 266.
The fate of active chromium hydroxide, Cr(OH)3·3H2O, in aqueous suspension. Study of the chemical changes involved in its aging.CrossRef | 1:CAS:528:DyaL28XhtVWjtbw%3D&md5=30e3dd2b9b42387a329c8a802e6a4e01CAS | open url image1

[48]  J. Springborg, Hydroxo-bridged complexes of chromium(III), cobalt(III), rhodium(III), and iridium(III). Adv. Inorg. Chem. 1988, 32, 55.
| 1:CAS:528:DyaL1cXkvVCrur0%3D&md5=c391c095def4e11210634f1163e71184CAS | open url image1

[49]  A. Müller, F. Peters, M. T. Pope, D. Gatteschi, Polyoxometalates: very large clusters – Nanoscale magnets. Chem. Rev. 1998, 98, 239.
Polyoxometalates: very large clusters – Nanoscale magnets.CrossRef | 11851505PubMed | open url image1

[50]  M. T. Pope, Heteropoly and Isopoly Oxometalates 1983 (Springer: Berlin).

[51]  A. Müller, E. Diemann, S. Q. N. Shah, C. Kuhlmann, M. Letzel, Soccer-playing metal oxide giant spheres: a first step towards patterning structurally well defined nano-object collectives. Chem. Commun. 2002, 2002, 440.
Soccer-playing metal oxide giant spheres: a first step towards patterning structurally well defined nano-object collectives.CrossRef | open url image1

[52]  M. T. Pope, A. Müller (Eds), Polyoxometalates: from platonic solids to anti-retroviral activity. Topics in Molecular Organization and Engineering, Vol. 10 1994 (Springer: Netherlands).

[53]  C. L. Hill, Polyoxometalates: reactivity. Compr. Coordin. Chem. II 2004, 4, 679.
Polyoxometalates: reactivity.CrossRef | 1:CAS:528:DC%2BD2cXhtVOktg%3D%3D&md5=b09b9cd01deb9f9926d7fdf227f586b9CAS | open url image1

[54]  M. Filowitz, R. K. C. Ho, W. G. Klemperer Shum, Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution. Inorg. Chem. 1979, 18, 93.
Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution.CrossRef | 1:CAS:528:DyaE1MXks1aqsQ%3D%3D&md5=297b63635c52e24bb9de10b984567b49CAS | open url image1

[55]  C. J. Besecker, W. G. Klemperer, D. J. Maltbie, D. A. Wright,, Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 2. Heteronuclear decoupling of quadrupolar nuclei. Inorg. Chem. 1985, 24, 1027.
Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 2. Heteronuclear decoupling of quadrupolar nuclei.CrossRef | 1:CAS:528:DyaL2MXhvFKlsLs%3D&md5=746292f709f5161739cd75682d51be08CAS | open url image1

[56]  L. Pettersson, I. Andersson, F. Taube, I. Toth, M. Hashimoto, O. W. Howarth, 17O NMR study of aqueous peroxoisopolymolybdate equilibria at lower peroxide/Mo ratios. Dalton Trans. 2003, 146.
17O NMR study of aqueous peroxoisopolymolybdate equilibria at lower peroxide/Mo ratios.CrossRef | 1:CAS:528:DC%2BD3sXht1KjtL8%3D&md5=9b242b640c0bcde592da690624051e14CAS | open url image1

[57]  J. J. Hastings, O. W. Howarth, A tungsten-183, proton and oxygen-17 nuclear magnetic resonance study of aqueous isopolytungstates. J. Chem. Soc., Dalton Trans. 1992, 2, 209.
A tungsten-183, proton and oxygen-17 nuclear magnetic resonance study of aqueous isopolytungstates.CrossRef | open url image1

[58]  O. W. Howarth, P. Kelly, Intramolecular oxygen exchange in the heptamolybdate(VI) isopolyanion. J. Chem. Soc. Chem. Commun. 1988, 1236.
Intramolecular oxygen exchange in the heptamolybdate(VI) isopolyanion.CrossRef | 1:CAS:528:DyaL1MXjt1Omsw%3D%3D&md5=2d5689b684064ee821ba9acbfc46367bCAS | open url image1

[59]  A. T. Harrison, O. W. Howarth, Oxygen exchange and protonation of polyanions: a multinuclear magnetic resonance study of tetradecavanadophosphate(9-) and decavanadate(6-). J. Chem. Soc., Dalton Trans. 1985, 9, 1953.
Oxygen exchange and protonation of polyanions: a multinuclear magnetic resonance study of tetradecavanadophosphate(9-) and decavanadate(6-).CrossRef | open url image1

[60]  R. K. Murmann, M. E. Shelton, Isotopic oxygen studies on aqueous molybdenum(IV). J. Amer. Chem. Soc. 1980, 102, 3984.
Isotopic oxygen studies on aqueous molybdenum(IV).CrossRef | 1:CAS:528:DyaL3cXksFGisLY%3D&md5=f8ba662a9b38b702e414cd9fe1efc424CAS | open url image1

[61]  K. R. Rodgers, R. K. Murmann, E. O. Schlemper, M. E. Shelton, Rates of isotopic oxygen exchange with solvent and oxygen atom transfer involving [Mo3O4(OH2)9]4+. Inorg. Chem. 1985, 24, 1313.
Rates of isotopic oxygen exchange with solvent and oxygen atom transfer involving [Mo3O4(OH2)9]4+.CrossRef | 1:CAS:528:DyaL2MXkslKrsLs%3D&md5=e62a6d802032c2b730ca95902e30ee3dCAS | open url image1

[62]  W. H. Casey, T. W. Swaddle, Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Rev. Geophys. 2003, 41, 1008.
Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry.CrossRef | open url image1

[63]  M. R. North, M. A. Fleischer, T. W. Swaddle, Precipitation from alkaline aqueous aluminosilicate solutions. Can. J. Chem. 2001, 79, 75.
Precipitation from alkaline aqueous aluminosilicate solutions.CrossRef | 1:CAS:528:DC%2BD3MXhsFensL8%3D&md5=10e4e2c82d62140ed347d2b0ff62ce7cCAS | open url image1

[64]  M. R. North, T. W. Swaddle, Kinetics of silicate exchange in alkaline aluminosilicate solutions. Inorg. Chem. 2000, 39, 2661.
Kinetics of silicate exchange in alkaline aluminosilicate solutions.CrossRef | 1:CAS:528:DC%2BD3cXjtlGrtrw%3D&md5=7c8b98657c688ee2e6392e93ea32efcaCAS | 11197023PubMed | open url image1

[65]  E. Vallazza, A. D. Bain, T. W. Swaddle, Dynamics of silicate exchange in highly alkaline potassium silicate solutions. Can. J. Chem. 1998, 76, 183.
| 1:CAS:528:DyaK1cXjt1Wquro%3D&md5=775d618efa1978b735f3875916ea5ccbCAS | open url image1

[66]  C. T. G. Knight, R. J. Balec, S. D. Kinrade, The structure of silicate anions in aqueous alkaline solutions. Angew. Chem. Int. Ed. 2007, 46, 8148.
The structure of silicate anions in aqueous alkaline solutions.CrossRef | 1:CAS:528:DC%2BD2sXhtlCktrvM&md5=f524f3771d8d2117dff5d94eb80ea81bCAS | open url image1

[67]  S. D. Kinrade, J. C. H. Donovan, A. S. Schach, C. T. G. Knight, Two substituted cubic octameric silicate cages in aqueous solution. J. Chem. Soc., Dalton Trans. 2002, 1250.
Two substituted cubic octameric silicate cages in aqueous solution.CrossRef | 1:CAS:528:DC%2BD38XitlamtLw%3D&md5=6c5d3c86e674ad2072d7126ab3e8aae2CAS | open url image1

[68]  S. D. Kinrade, C. T. G. Knight, D. L. Pole, R. T. Syvitski, Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 2. Polymerization kinetics. Inorg. Chem. 1998, 37, 4278.
Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 2. Polymerization kinetics.CrossRef | 1:CAS:528:DyaK1cXlslOgsbk%3D&md5=4e2b7381124a1ee89aa8521ed1f143b8CAS | 11670563PubMed | open url image1

[69]  S. D. Kinrade, C. T. G. Knight, D. L. Pole, R. T. Syvitski, Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 1. Equilibria, 29Si chemical shifts, and 29Si relaxation. Inorg. Chem. 1998, 37, 4272.
Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 1. Equilibria, 29Si chemical shifts, and 29Si relaxation.CrossRef | 1:CAS:528:DyaK1cXlslOgsb4%3D&md5=9c5a31642c54103fabaedd20aaa06c1fCAS | 11670562PubMed | open url image1

[70]  S. D. Kinrade, K. Marat, C. T. G. Knight, Longitudinal 29Si nuclear magnetic relaxation in aqueous alkali-metal silicate solutions revisited. J. Phys. Chem. 1996, 100, 18351.
Longitudinal 29Si nuclear magnetic relaxation in aqueous alkali-metal silicate solutions revisited.CrossRef | 1:CAS:528:DyaK28XmsFentLc%3D&md5=ad4d4dd0b93609a3cc17b48e6ea07480CAS | open url image1

[71]  S. D. Kinrade, Oxygen-17 NMR study of aqueous potassium silicates. J. Phys. Chem. 1996, 100, 4760.
Oxygen-17 NMR study of aqueous potassium silicates.CrossRef | 1:CAS:528:DyaK28Xhtleiu74%3D&md5=8de7dee1e96db93841475ff87388afa7CAS | open url image1

[72]  S. D. Kinrade, D. L. Pole, Effect of alkali-metal cations on the chemistry of aqueous silicate solutions. Inorg. Chem. 1992, 31, 4558.
Effect of alkali-metal cations on the chemistry of aqueous silicate solutions.CrossRef | 1:CAS:528:DyaK38XlvF2ntrk%3D&md5=093fa067c107d3c3660f41ee6830d3d6CAS | open url image1

[73]  S. D. Kinrade, T. W. Swaddle, Silicon-29 NMR studies of aqueous silicate solutions. 1. Chemical shifts and equilibria. Inorg. Chem. 1988, 27, 4253.
Silicon-29 NMR studies of aqueous silicate solutions. 1. Chemical shifts and equilibria.CrossRef | 1:CAS:528:DyaL1cXlvFynt7Y%3D&md5=82a1ed4292e00ae888f64466e74d153bCAS | open url image1

[74]  S. D. Kinrade, T. W. Swaddle, Silicon-29 NMR studies of aqueous silicate solutions. 2. Transverse silicon-29 relaxation and the kinetics and mechanism of silicate polymerization. Inorg. Chem. 1988, 27, 4259.
Silicon-29 NMR studies of aqueous silicate solutions. 2. Transverse silicon-29 relaxation and the kinetics and mechanism of silicate polymerization.CrossRef | 1:CAS:528:DyaL1cXlvFyht74%3D&md5=e1a359378ff6388caf698083d7b06d52CAS | open url image1

[75]  S. D. Kinrade, T. W. Swaddle, Mechanisms of longitudinal silicon-29 nuclear magnetic relaxation in aqueous alkali-metal silicate solutions. J. Am. Chem. Soc. 1986, 108, 7159.
Mechanisms of longitudinal silicon-29 nuclear magnetic relaxation in aqueous alkali-metal silicate solutions.CrossRef | 1:CAS:528:DyaL28XmtVWrs7k%3D&md5=df0f7265d8081b87546ac660bdc3029eCAS | open url image1

[76]  S. D. Kinrade, T. W. Swaddle, Aqueous silicate exchange dynamics and silicon-29 nuclear magnetic relaxation: the importance of protonation equilibriums. J. Chem. Soc. Chem. Commun. 1986, 120.
Aqueous silicate exchange dynamics and silicon-29 nuclear magnetic relaxation: the importance of protonation equilibriums.CrossRef | 1:CAS:528:DyaL28XhvFCjs7Y%3D&md5=6309c02550c7bbb3a1bbee05b0a39d56CAS | open url image1

[77]  W. H. Casey, G. Sposito, On the temperature dependence of mineral dissolution rates. Geochim. Cosmochim. Acta 1992, 56, 3825.
On the temperature dependence of mineral dissolution rates.CrossRef | 1:CAS:528:DyaK38XmtlOhurw%3D&md5=2cc928ab814866002521902be5c54376CAS | open url image1

[78]  T. Schneppensieper, S. Seibig, A. Zahl, P. Tregloan, R. van Eldik, Influence of chelate effects on the water-exchange mechanism of polyaminecarboxylate complexes of iron(III). Inorg. Chem. 2001, 40, 3670.
Influence of chelate effects on the water-exchange mechanism of polyaminecarboxylate complexes of iron(III).CrossRef | 1:CAS:528:DC%2BD3MXksVKls7o%3D&md5=18f1980e706cecedd323d3a398094e8bCAS | 11442363PubMed | open url image1

[79]  J. Maigut, R. Meier, A. Zahl, R. van Eldik, Triggering water exchange mechanisms via chelate architecture. Shielding of transition metal centers by aminopolycarboxylate spectator ligands. J. Am. Chem. Soc. 2008, 130, 14 556.
Triggering water exchange mechanisms via chelate architecture. Shielding of transition metal centers by aminopolycarboxylate spectator ligands.CrossRef | 1:CAS:528:DC%2BD1cXht1WjsrjJ&md5=a4c4a3d97aab1cda8732cea1cca7b4d4CAS | open url image1

[80]  T. Schneppensieper, A. Zahl, R. van Eldik, Water exchange controls the complex-formation mechanism of water-soluble iron(III) porphyrins: conclusive evidence for dissociative water exchange from a high-pressure 17O NMR study. Angew. Chem. Int. Ed. 2001, 40, 1678.
Water exchange controls the complex-formation mechanism of water-soluble iron(III) porphyrins: conclusive evidence for dissociative water exchange from a high-pressure 17O NMR study.CrossRef | 1:CAS:528:DC%2BD3MXjslChu74%3D&md5=426d3aaa7d0a0b61e55e698895564710CAS | open url image1

[81]  L. Babcock, R. Pizer, Dynamics of boron acid complexation reactions: formation of the 1 : 1 boron acid-ligand complexes. Inorg. Chem. 1980, 19, 56.
Dynamics of boron acid complexation reactions: formation of the 1 : 1 boron acid-ligand complexes.CrossRef | 1:CAS:528:DyaL3cXhtVSgsr4%3D&md5=03e6dfc92f5cfbc5a517fb015aeb5cbbCAS | open url image1

[82]  K. Yoshino, M. Kotaka, M. Okamoto, H. Kakihana, 11B-NMR study of the complex formation of borate with catechol and L-dopa. Bull. Chem. Soc. Jpn. 1979, 52, 3005.
11B-NMR study of the complex formation of borate with catechol and L-dopa.CrossRef | 1:CAS:528:DyaE1MXmtFOksb8%3D&md5=96e4f558a3867af3d6adc80f3f4e7b71CAS | open url image1

[83]  R. Pizer, P. J. Ricatto, C. A. Tihal, Thermodynamics of several boron acid complexation reactions studied by variable-temperature 1H- and 11B-NMR spectroscopy. Polyhedron 1993, 12, 2137.
Thermodynamics of several boron acid complexation reactions studied by variable-temperature 1H- and 11B-NMR spectroscopy.CrossRef | 1:CAS:528:DyaK2cXmtlGlsQ%3D%3D&md5=896183e7db3d83eabf3782a640466017CAS | open url image1

[84]  R. Pizer, C. A. Tihal, Mechanism of boron acid/polyol complex formation. Comments on the trigonal/tetrahedral interconversion on boron. Polyhedron 1996, 15, 3411.
Mechanism of boron acid/polyol complex formation. Comments on the trigonal/tetrahedral interconversion on boron.CrossRef | 1:CAS:528:DyaK28XjvFGgs7w%3D&md5=6031e85efc7ceb3d5c7993992edd14b0CAS | open url image1

[85]  M. Ishihara, Y. Mouri, S. Funahashi, M. Tanaka, Mechanistic study of the complex formation of boric acid. Inorg. Chem. 1991, 30, 2356.
Mechanistic study of the complex formation of boric acid.CrossRef | 1:CAS:528:DyaK3MXitFGms78%3D&md5=2b2d24d9735f37d0006a8e2661f2bb25CAS | open url image1

[86]  S. Kagawa, K.-I. Sugimoto, S. Funahashi, Kinetic study on complexation of boric acid with 4-isopropyltropolone in non-aqueous solvents. Inorg. Chim. Acta 1995, 231, 115.
Kinetic study on complexation of boric acid with 4-isopropyltropolone in non-aqueous solvents.CrossRef | 1:CAS:528:DyaK2MXltVylu7k%3D&md5=666f086e6a5e217b1e33249a82ba7226CAS | open url image1

[87]  R. Pizer, L. Babcock, Mechanism of the complexation of boron acids with catechol and substituted catechols. Inorg. Chem. 1977, 16, 1677.
Mechanism of the complexation of boron acids with catechol and substituted catechols.CrossRef | 1:CAS:528:DyaE2sXktlygu7k%3D&md5=e8eda7ef8dd305c5d39a2e83037b8e5cCAS | open url image1

[88]  A. Crumbliss, A.-M. Albrecht-Gary, Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release, in Metal Ions in Biological Systems (Eds A. Sigal, H. Sigal) 1998 (Marcel Dekker: New York).

[89]  J. G. Hering, M. M. Morel Francois, Slow complexation reactions in seawater. Geochim. Cosmochim. Acta 1989, 53, 611.
Slow complexation reactions in seawater.CrossRef | 1:CAS:528:DyaL1MXksVCrsbg%3D&md5=761b449d6ef8a733619a73df0afaea22CAS | open url image1

[90]  F. G. Kari, W. Giger, Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt. Environ. Sci. Technol. 1995, 29, 2814.
Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt.CrossRef | 1:CAS:528:DyaK2MXptFKhu7w%3D&md5=d5fbaca42fb2a8a351310144b30b8471CAS | 22206530PubMed | open url image1

[91]  B. Nowack, H. Xue, L. Sigg, Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environ. Sci. Technol. 1997, 31, 866.
Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater.CrossRef | 1:CAS:528:DyaK2sXotVahtQ%3D%3D&md5=6b84419d5d876d0071f63ace61322450CAS | open url image1

[92]  A. F. Wallace, G. V. Gibbs, P. M. Dove, Influence of ion-associated water on the hydrolysis of Si-O bonded nteractions. J. Phys. Chem. A 2010, 114, 2534.
Influence of ion-associated water on the hydrolysis of Si-O bonded nteractions.CrossRef | 1:CAS:528:DC%2BC3cXht1Knsrc%3D&md5=6e799c491491273c447889850289e437CAS | 20108957PubMed | open url image1

[93]  A. Czap, N. I. Neuman, T. W. Swaddle, Electrochemistry and homogeneous self-exchange kinetics of the aqueous 12-tungstoaluminate(5-/6-) couple. Inorg. Chem. 2006, 45, 9518.
Electrochemistry and homogeneous self-exchange kinetics of the aqueous 12-tungstoaluminate(5-/6-) couple.CrossRef | 1:CAS:528:DC%2BD28XhtV2gtLvP&md5=f8f8b2d9d055f631962de079f82d977dCAS | 17083254PubMed | open url image1

[94]  J. R. Rustad, J. S. Loring, W. H. Casey, Oxygen-exchange pathways in aluminum polyoxocations. Geochim. Cosmochim. Acta 2004, 68, 3011.
Oxygen-exchange pathways in aluminum polyoxocations.CrossRef | 1:CAS:528:DC%2BD2cXltlyitLg%3D&md5=c82b690028f588c190f9adf89dcc0817CAS | open url image1

[95]  W. H. Casey, J. R. Rustad, Reaction dynamics, molecular clusters and aqueous geochemistry. Annu. Rev. Earth Sci. 2007, 35, 21.
Reaction dynamics, molecular clusters and aqueous geochemistry.CrossRef | 1:CAS:528:DC%2BD2sXmtlKhtbs%3D&md5=6133513ace3d94fc6eaf874b38668f1cCAS | open url image1

[96]  E. M. Villa, C. A. Ohlin, J. R. Rustad, W. H. Casey, Isotope-exchange dynamics in isostructural decametalates with profound differences in reactivity. J. Am. Chem. Soc 2009, 131, 16 488.
Isotope-exchange dynamics in isostructural decametalates with profound differences in reactivity.CrossRef | 1:CAS:528:DC%2BD1MXpsFart7w%3D&md5=22a94e2858eb04c4b2592d296c38f214CAS | open url image1

[97]  E. M. Villa, C. A. Ohlin, W. H. Casey, Adding reactivity to structure 2: oxygen-isotope-exchange rates in three isostructural oxide ions. Am. J. Sci. 2010, 310, 629.
Adding reactivity to structure 2: oxygen-isotope-exchange rates in three isostructural oxide ions.CrossRef | 1:CAS:528:DC%2BC3MXht1antb8%3D&md5=6bb23eff59b40f4710db33248e0d883dCAS | open url image1

[98]  E. M. Villa, C. A. Ohlin, W. H. Casey, Borate accelerates oxygen-isotope exchange for polyoxoniobate ions in water. Chemistry 2010, 16, 8631.
Borate accelerates oxygen-isotope exchange for polyoxoniobate ions in water.CrossRef | 1:CAS:528:DC%2BC3cXpslWmtL8%3D&md5=2645700c359cdc1a84d40af085712ca5CAS | 20602370PubMed | open url image1

[99]  E. M. Villa, C. A. Ohlin, W. H. Casey, Oxygen-isotope exchange rates for three isostructural polyoxometalate ions. J. Am. Chem. Soc. 2010, 132, 5264.
Oxygen-isotope exchange rates for three isostructural polyoxometalate ions.CrossRef | 1:CAS:528:DC%2BC3cXjs1Wku7w%3D&md5=a805f9b87119858c550baf376754fe37CAS | 20302304PubMed | open url image1

[100]  E. M. Villa, C. A. Ohlin, E. Balogh, T. M. Anderson, M. D. Nyman, W. H. Casey, Reaction dynamics of the decaniobate ([HxNb10O28](6–x)–) ion in water. Angew. Chem. Int. Ed. 2008, 47, 4844.
Reaction dynamics of the decaniobate ([HxNb10O28](6–x)–) ion in water.CrossRef | 1:CAS:528:DC%2BD1cXnvF2lsLs%3D&md5=94a0c33455bcc98c362adab6df164ecaCAS | open url image1

[101]  E. M. Villa, C. A. Ohlin, E. Balogh, T. A. Anderson, M. Nyman, W. H. Casey, Adding reactivity to structure – reaction dynamics in a nanometer-size oxide ion in water. Am. J. Sci. 2008, 308, 942.
Adding reactivity to structure – reaction dynamics in a nanometer-size oxide ion in water.CrossRef | 1:CAS:528:DC%2BD1cXhtlyjtbnP&md5=90fecc0dcd1a2737b39c5cc8884d2017CAS | open url image1

[102]  J. R. Rustad, W. H. Casey, Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution. Nat. Mater. 2012, 11, 223.
Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution.CrossRef | 1:CAS:528:DC%2BC38XlsF2jsQ%3D%3D&md5=5bbb6532780ede72f3c3b4fc04f56771CAS | 22231599PubMed | open url image1

[103]  R. van Eldik (Ed.) Advances in Inorganic Chemistry 2010, Vol. 62 (Academic Press: San Diego, CA).

[104]  J. R. Rustad, Elementary reactions in polynuclear ions and aqueous-mineral interfaces: a new geology, in Advances in Inorganic Chemistry (Ed. R. van Eldik) 2010, pp. 391–436 (Academic Press: San Diego, CA).

[105]  W. H. Casey, On the relative dissolution rates of some oxide and orthosilicate minerals. J. Colloid Interface Sci. 1991, 146, 586.
On the relative dissolution rates of some oxide and orthosilicate minerals.CrossRef | 1:CAS:528:DyaK3MXmtFWqt7w%3D&md5=441c6642f154286c1a3d46e294b58fdcCAS | open url image1

[106]  H. Stuenzi, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 1. Characterization of a tetrameric species. Inorg. Chem. 1983, 22, 2145.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 1. Characterization of a tetrameric species.CrossRef | 1:CAS:528:DyaL3sXkvVWmt7s%3D&md5=0ccfadc4967be2a163bf40f9a1145cc5CAS | open url image1

[107]  T. V. Rowland, Oxygen-17 NMR studies of the rate of water exchange from partially complexed nickel ion 1975, Ph.D. thesis, University of California, Berkeley.

[108]  J. Burgess, Metal Ions in Solution 1978 (Ellis-Horwood Limited: Chichester, UK).

[109]  J. Burgess, Ions in Solution: Basic Principles of Chemical Interactions 1988 (Ellis-Horwood Limited: Chichester, UK).

[110]  D. W. Margerum, H. M. Rosen, The effect of coordinated ligands on the rate of replacement of bound water by ammonia in nickel(II) complexes. J. Am. Chem. Soc. 1967, 89, 1088.
The effect of coordinated ligands on the rate of replacement of bound water by ammonia in nickel(II) complexes.CrossRef | 1:CAS:528:DyaF2sXovV2mtA%3D%3D&md5=c78b2568e9e0d8645315c80f5c803c01CAS | open url image1

[111]  R. G. Wilkins, The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes. 1974 (VCH: New York).

[112]  R. G. Wilkins, The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd edn 1991 (VCH: New York).

[113]  W. H. Casey, H. R. Westrich, Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds. Nature 1992, 355, 157.
Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds.CrossRef | 1:CAS:528:DyaK38XhtFShs74%3D&md5=f1094162f68e0b0cf7dd4a34b52b84f3CAS | open url image1

[114]  O. S. Pokrovsky, J. Schott, Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ. Sci. Technol. 2002, 36, 426.
Surface chemistry and dissolution kinetics of divalent metal carbonates.CrossRef | 1:CAS:528:DC%2BD38XhsVWhsg%3D%3D&md5=7dee86086fbc30652312ad4c9364c52dCAS | 11871558PubMed | open url image1

[115]  K. Hachiya, M. Sasaki, Y. Saruta, N. Mikami Yasunaga, Static and kinetic studies of adsorption-desorption of metal ions on a γ-alumina surface. 1. Static study of adsorption-desorption. J. Phys. Chem. 1984, 88, 23.
Static and kinetic studies of adsorption-desorption of metal ions on a γ-alumina surface. 1. Static study of adsorption-desorption.CrossRef | 1:CAS:528:DyaL2cXktVWrug%3D%3D&md5=facd7f07afdc57775ff2e012926d6a74CAS | open url image1

[116]  C. A. Ohlin, et al. The dissolution of insulating oxides at the molecular scale. Nat. Mater. 2010, 9, 11.
The dissolution of insulating oxides at the molecular scale.CrossRef | 1:CAS:528:DC%2BD1MXhsFOnsr3K&md5=360924a91371667767f6e09539a4777bCAS | 20019664PubMed | open url image1

[117]  W. H. Casey, Large aqueous aluminum-hydroxide molecules. Chem. Rev. 2006, 106, 1.
Large aqueous aluminum-hydroxide molecules.CrossRef | 1:CAS:528:DC%2BD2MXht1yrsLvP&md5=9e56157e65743d5847ce6aecee6ae554CAS | 16402770PubMed | open url image1

[118]  J. Rowsell, L. F. Nazar, Speciation and thermal transformation in alumina sols: structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)2618+ and its δ-Keggin moiete. J. Am. Chem. Soc. 2000, 122, 3777.
Speciation and thermal transformation in alumina sols: structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)2618+ and its δ-Keggin moiete.CrossRef | 1:CAS:528:DC%2BD3cXitVGntL4%3D&md5=2e1cddcbc6312a4faf8f7af9bcbc746bCAS | open url image1

[119]  L. Allouche, C. Gerardin, T. Loiseau, G. Ferey, F. Taulelle, Al30: a giant aluminum polycation. Angew. Chem. Int. Ed. 2000, 39, 511.
Al30: a giant aluminum polycation.CrossRef | 1:CAS:528:DC%2BD3cXhtlagu7k%3D&md5=f7bc476cfbac2990c41fe92e22a6c2afCAS | open url image1

[120]  W. H. Casey, J. R. Rustad, L. Spiccia, Minerals as molecules – use of aqueous oxide and hydroxide clusters to understand geochemical reactions. Chemistry 2009, 15, 4496.
Minerals as molecules – use of aqueous oxide and hydroxide clusters to understand geochemical reactions.CrossRef | 1:CAS:528:DC%2BD1MXltFGjs74%3D&md5=647ae8b808e53adf0acf3012badab461CAS | 19347896PubMed | open url image1

[121]  H. R. Westrich, R. T. Cygan, W. H. Casey, C. Zemitis, G. W. Arnold, The dissolution kinetics of mixed-cation orthosilicate minerals. Am. J. Sci. 1993, 293, 869.
The dissolution kinetics of mixed-cation orthosilicate minerals.CrossRef | 1:CAS:528:DyaK2cXktl2hurY%3D&md5=65d237bb1c34beb39df06b7ccba3833eCAS | open url image1



Rent Article (via Deepdyve) Export Citation Cited By (6)