Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Dissolution of metal and metal oxide nanoparticles under natural freshwater conditions

Niksa Odzak A B , David Kistler A , Renata Behra A and Laura Sigg A
+ Author Affiliations
- Author Affiliations

A Eawag, Swiss Federal Institute of Aquatic Science & Technology, Department Environmental Toxicology (Utox), CH-8600 Dübendorf, Switzerland.

B Corresponding author. Email: odzak@eawag.ch

Environmental Chemistry 12(2) 138-148 https://doi.org/10.1071/EN14049
Submitted: 6 March 2014  Accepted: 19 May 2014   Published: 15 September 2014

Environmental context. Engineered nanomaterials (e.g. silver, zinc oxide and copper oxide) are being widely used in many consumer products such as cosmetics, food packaging and textiles. During their usage and treatment, they will be released to natural waters and partly dissolve, depending on the water type and nanomaterial characteristics. These nanomaterials may thus have some toxic effects to aquatic organisms and indirectly to humans because of higher concentrations of dissolved silver, zinc and copper in natural waters.

Abstract. The dissolution of some widely used nanoparticles (NPs), Ag (citrate coated), ZnO, CuO and Cu-carbon coated (Cu/C), has been studied over a period of 9 days in five different natural waters: wastewater treatment plant effluent (WWTP Dübendorf) and lakes Greifen, Lucerne, Gruère and Cristallina. These waters differ in ionic strength, pH and dissolved organic carbon (DOC). The dissolved fraction of metals from NPs was determined using DGT (diffusion gradients in thin films) and ultrafiltration (UF). ZnO-NPs and CuO-NPs dissolved to a large extent in all waters, whereas the dissolved fraction was much smaller in the case of Cu/C and Ag-NPs. All NPs dissolved to a larger extent in water from Lake Cristallina with low pH, low ionic strength and low DOC. Ag-NP dissolution was favoured at low ionic strength and low pH, whereas dissolution of CuO-NPs was mostly dependent on pH. Cu/C-NPs strongly agglomerated and sedimented and yielded low dissolved Cu concentrations. DGT and UF produced similar results, although these two methods differ in the measurement time scale. The results of this study indicate that dissolution is an important process for these NPs under conditions of natural waters or wastewaters.


References

[1]  B. P. Barnett, A. Arepally, P. V. Karmarkar, D. Qian, W. D. Gilson, P. Walczak, V. Howland, L. Lawler, C. Lauzon, M. Stuber, D. L. Kraitchman, J. W. M. Bulte, Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat. Med. 2007, 13, 986.
Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells.CrossRef | 1:CAS:528:DC%2BD2sXos1CjsLY%3D&md5=26e95a6af30dcfae499dcdc81b2034a0CAS | 17660829PubMed | open url image1

[2]  Y. Dong, S. S. Feng, In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomater 2007, 28, 4154.
In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy.CrossRef | 1:CAS:528:DC%2BD2sXns1Kms7s%3D&md5=cbc888ca5a7e7444d82c2f8a44559f49CAS | open url image1

[3]  O. V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2004, 2, 3.
Applications of nanoparticles in biology and medicine.CrossRef | open url image1

[4]  M. Lens, Use of fullerenes in cosmetics. Recent Pat. Biotechnol. 2009, 3, 118.
Use of fullerenes in cosmetics.CrossRef | 1:CAS:528:DC%2BD1MXotlWrtrY%3D&md5=03208cba23b0afe3680cd508a7c0f702CAS | 19519567PubMed | open url image1

[5]  R. H. Müller, M. Radtke, S. A. Wissing, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparation. Adv. Drug Delivery Rev. 2002, 54, S131.
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparation.CrossRef | open url image1

[6]  S. N. Pavasupree, M. Nakajima, Y. Suzuki, S. Yoshikawa, Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J. Photochem. Photobiol. 2006, 184, 163.
Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure.CrossRef | 1:CAS:528:DC%2BD28XhtVOns7rJ&md5=2a5bb326abab0e106d6cf8a9d7c95ffbCAS | open url image1

[7]  D. Wei, H. E. Unalan, D. X. Han, Q. X. Zhang, L. Niu, G. Amaratunga, T. A. Ryhanen, Solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate. Nanotechnology 2008, 19, 424006.
Solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate.CrossRef | 21832666PubMed | open url image1

[8]  W. Tungittiplakorn, L. W. Lion, C. Cohen, J. Y. Kim, Engineered polymeric nanoparticles for soil remediation. Environ. Sci. Technol. 2004, 38, 1605.
Engineered polymeric nanoparticles for soil remediation.CrossRef | 1:CAS:528:DC%2BD2cXms1Krtg%3D%3D&md5=2b08f490433b595466861aca1259c3c9CAS | 15046367PubMed | open url image1

[9]  W. X. Zhang, Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 2003, 5, 323.
Nanoscale iron particles for environmental remediation: an overview.CrossRef | 1:CAS:528:DC%2BD3sXmvFSiu7w%3D&md5=73c3b7c539d3c6dff9fc75f2916441bfCAS | open url image1

[10]  A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, P. N. Prasad, Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J. Phys. Chem. 2008, 112, 10 721.
| 1:CAS:528:DC%2BD1cXnslOgt70%3D&md5=97ae956cbf7ba20a25e5ad89373ceeb2CAS | open url image1

[11]  National Science Foundation, Nanotechnology research directions for societal needs in 2020: retrospective and outlook summary, in Science Policy Reports (Eds M. Roco, C. Mirkin, M. Hersan) 2010, pp. 1–28 (Springer: New York).

[12]  K. Schmid, M. Riediker, Use of nanoparticles in Swiss industry: a targeted survey. Environ. Sci. Technol. 2008, 42, 2253.
Use of nanoparticles in Swiss industry: a targeted survey.CrossRef | 1:CAS:528:DC%2BD1cXitlOms7Y%3D&md5=8fed60fa7da672e4eb1b48ea624ea13bCAS | 18504950PubMed | open url image1

[13]  M. Auffan, J. Rose, M. R. Wiesner, J. Y. Bottero, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157, 1127.
Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro.CrossRef | 1:CAS:528:DC%2BD1MXis1eltbk%3D&md5=46edfd73d05a3ba9f191285cde7bc1e3CAS | 19013699PubMed | open url image1

[14]  N. C. Mueller, B. Nowack, Exposure modelling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447.
Exposure modelling of engineered nanoparticles in the environment.CrossRef | 1:CAS:528:DC%2BD1cXlslOju7k%3D&md5=ceb3a3da8f5c13416742e68a914e5924CAS | 18605569PubMed | open url image1

[15]  M. R. Wiesner, J. Y. Bottero, Nanotechnology and the environment, in Environmental Nanotechnology – Applications and Impacts of Nano-materials (Eds M. R. Wiesner, J. Y. Bottero) 2007, pp. 3–15 (McGraw Hill: New York).

[16]  M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006, 40, 4336.
Assessing the risks of manufactured nanomaterials.CrossRef | 1:CAS:528:DC%2BD28XmvFWgsb4%3D&md5=658e5cb90b427a2f73b2955afad59c89CAS | 16903268PubMed | open url image1

[17]  M. A. A. Schoonen, C. A. Cohn, E. Roemer, R. Laffers, S. R. Simon, T. O'Riordan, Mineral-induced formation of reactive oxygen species. Med. Mineraol. Geochem. 2006, 64, 179.
Mineral-induced formation of reactive oxygen species.CrossRef | 1:CAS:528:DC%2BD2sXkslKgug%3D%3D&md5=f9e0b6987cf729ce7442ec609bfc946dCAS | open url image1

[18]  R. D. Handy, R. Owen, E. Valsami-Jones, The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicol. 2008, 17, 315.
The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs.CrossRef | 1:CAS:528:DC%2BD1cXmsVKrsbo%3D&md5=a62bb12c9914b0dad31c7f2e5f71330bCAS | open url image1

[19]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.CrossRef | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=66bb5f70ddef5f791cd00b10e5afac24CAS | 19086204PubMed | open url image1

[20]  D. M. Templeton, F. Ariese, R. Cornelis, L.-G. Danielsson, H. Muntau, H. P. Van Leeuwen, R. Lobinski, Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl. Chem. 2000, 72, 1453.
Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches.CrossRef | 1:CAS:528:DC%2BD3MXis1Gq&md5=eedc1444b3896b28ad01a0a7610de184CAS | open url image1

[21]  C. Coutris, T. Hertel-Aas, E. Lapied, E. J. Joner, D. H. Oughton, Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 2012, 6, 186.
Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida.CrossRef | 1:CAS:528:DC%2BC38Xhsl2ntrc%3D&md5=d540612701da40d9cd17aa5d800de467CAS | 21486186PubMed | open url image1

[22]  R. Ma, C. Levard, S. M. Marinakos, Y. W. Cheng, J. Liu, F. M. Michel, G. E. Brown, G. V. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 752.
Size-controlled dissolution of organic-coated silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC3MXhsFGqsrnF&md5=5af3c81d2b7d3a31dca335e610d1083bCAS | 22142034PubMed | open url image1

[23]  E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959.
Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.CrossRef | 1:CAS:528:DC%2BD1cXhtFOqt7nO&md5=a63fd345e6343085da39fe17c6c9ce7bCAS | 19192825PubMed | open url image1

[24]  T. S. Radniecki, D. P. Stankus, A. Neigh, J. A. Nason, L. Semprini, Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere 2011, 85, 43.
Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea.CrossRef | 1:CAS:528:DC%2BC3MXhtVKjtbfE&md5=7e371e344b3be40328429cc38eb75440CAS | 21757219PubMed | open url image1

[25]  W. Davison, H. Zhang, In situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 1994, 367, 546.
In situ speciation measurements of trace components in natural-waters using thin-film gels.CrossRef | 1:CAS:528:DyaK2cXhsVemtrc%3D&md5=7f01581ce764d20b25b9eae66999bfd7CAS | open url image1

[26]  W. Davison, H. Zhang, Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ. Chem. 2012, 9, 1.
Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics.CrossRef | 1:CAS:528:DC%2BC38Xis1amtbs%3D&md5=1591450476b14275778c5135e50da0beCAS | open url image1

[27]  N. Odzak, D. Kistler, H. B. Xue, L. Sigg, In situ trace metal speciation in a eutrophic lake using the technique of diffusion gradients in thin films (DGT). Aquat. Sci. 2002, 64, 292.
In situ trace metal speciation in a eutrophic lake using the technique of diffusion gradients in thin films (DGT).CrossRef | 1:CAS:528:DC%2BD38XpsVSrt7c%3D&md5=e7e7472d3587ed99275040bb53f1c671CAS | open url image1

[28]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, M. Martin, S. Nöel, J. Nur, N. Odzak, J. Puy, W. van Riemsdijk, E. Temminghoff, M.-L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. W. Warnken, L. Weng, H. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.CrossRef | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=f7f9fc3fda896bc31c32dd8706d5d371CAS | 16570618PubMed | open url image1

[29]  H. Zhang, W. Davison, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995, 67, 3391.
Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution.CrossRef | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=e0fcb9e8e6a3c8266970f72de4a797a9CAS | open url image1

[30]  N. Odzak, D. Kistler, R. Behra, L. Sigg, Dissolution of metal and metal oxide nanoparticles in aqueous media. Environ. Pollut. 2014, 191, 132.
Dissolution of metal and metal oxide nanoparticles in aqueous media.CrossRef | 1:CAS:528:DC%2BC2cXpslKqsL8%3D&md5=43c2472438f0eb3b2912fa11bec189e4CAS | 24832924PubMed | open url image1

[31]  G. E. Batley, S. C. Apte, J. L. Stauber, Speciation and bioavailabillity of trace metals in water: progress since 1982. Aust. J. Chem. 2004, 57, 903.
Speciation and bioavailabillity of trace metals in water: progress since 1982.CrossRef | 1:CAS:528:DC%2BD2cXps1Sjsr8%3D&md5=cb24c5e443d8d7d9d7ff219ec4a8449eCAS | open url image1

[32]  P. G. C. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 45–102 (Wiley: Chichester, UK).

[33]  P. G. C. Campbell, O. Errécalde, C. Fortin, V. P. Hiriart-Baer, B. Vigneault, Metal bioavailability to phytoplankton – applicability of the biotic ligand model. Comp. Biochem. Physiol. Part Toxicol. Pharmacol. 2002, 133, 189.
Metal bioavailability to phytoplankton – applicability of the biotic ligand model.CrossRef | open url image1

[34]  L. Sigg, R. Behra, Speciation and bioavailability of trace metals in freshwater environments, in Biogeochemistry, Availability, and Transport of Metals in the Environment (Eds A. Sigel, H. Sigel, R. K. O. Sigel) 2005, pp. 47–73 (Taylor & Francis Group: Boca Raton, FL).

[35]  F. Piccapietra, C. Gil-Allué, L. Sigg, R. Behra, Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ. Sci. Technol. 2012, 46, 7390.
Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate.CrossRef | 1:CAS:528:DC%2BC38XnvF2ktrc%3D&md5=2e912bf396a6a4755775ec8e01ada5c2CAS | 22667990PubMed | open url image1

[36]  Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271.
Negligible particle-specific antibacterial activity of silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC38XpvVKktLc%3D&md5=7086a280ce2efac83f8510779a285fd1CAS | 22765771PubMed | open url image1

[37]  F. Piccapietra, L. Sigg, R. Behra, Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ. Sci. Technol. 2012, 46, 818.
Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater.CrossRef | 1:CAS:528:DC%2BC3MXhsFCmsrvI&md5=a6ca8df72455d5448f3f05e642aec839CAS | 22133031PubMed | open url image1

[38]  G. A. Sotiriou, A. Meyer, J. T. N. Knijnenburg, S. Panke, S. E. Pratsinis, Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 2012, 28, 15 929.
Quantifying the origin of released Ag+ ions from nanosilver.CrossRef | 1:CAS:528:DC%2BC38XhsFWks7jN&md5=3ee9713752a6c01a0ece3889ad9cc321CAS | open url image1

[39]  H. Zhang, Practical Guide for Making Diffusive Gel and Chelex Gel 2004 (DGT Research Ltd: Lancaster, UK).

[40]  H. Zhang, W. Davison, Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329.
Diffusional characteristics of hydrogels used in DGT and DET techniques.CrossRef | 1:CAS:528:DyaK1MXmvFeqtLk%3D&md5=c90b7ac0d42a706cf919c89dd3c1655bCAS | open url image1

[41]  J. P. Gustafsson, Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci. 2001, 244, 102.
Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model.CrossRef | 1:CAS:528:DC%2BD3MXot1KisLw%3D&md5=c17d1ca37696e340e9ed673f5af5ff1aCAS | open url image1

[42]  Z.-M. Xiu, J. Ma, P. J. J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 2011, 45, 9003.
Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions.CrossRef | 1:CAS:528:DC%2BC3MXht1ags77I&md5=21bcd55abf75149ae1c6ade56f89ce2eCAS | 21950450PubMed | open url image1

[43]  X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, 1119.
Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.CrossRef | 1:CAS:528:DC%2BC3MXhsFygt7vN&md5=29f8517bdb955eb83c1aeb28945039f7CAS | 22148238PubMed | open url image1

[44]  Z. Chen, P. G. C. Campbell, C. Fortin, Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis. J. Phys. Chem. 2012, 116, 6532.
Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis.CrossRef | 1:CAS:528:DC%2BC38XjtVGhsr0%3D&md5=4f032a7d3332f849ec977f1ef59a7fb2CAS | open url image1

[45]  C. Levard, S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry, G. E. Brown, Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738.
Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli.CrossRef | 1:CAS:528:DC%2BC3sXmvF2js70%3D&md5=360a91aa4aabb8a8673bba0553a874dcCAS | 23641814PubMed | open url image1

[46]  E. Tipping, Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances.CrossRef | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=5713777c9b890be10b9003a0b7744eadCAS | open url image1

[47]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
Environmental transformations of silver nanoparticles: impact on stability and toxicity.CrossRef | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 22339502PubMed | open url image1



Rent Article (via Deepdyve) Export Citation Cited By (8)