Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques

Lindsay M. Furtado A , Md Ehsanul Hoque A , Denise M. Mitrano B D , James F. Ranville B , Beth Cheever C E , Paul C. Frost C , Marguerite A. Xenopoulos C , Holger Hintelmann A and Chris D. Metcalfe A F

A Trent University, Water Quality Center, 1600 Westbank Drive, Peterborough, ON, K9J 7B8, Canada.

B Colorado School of Mines, Department of Chemistry and Geochemistry, 1500 Illinois Street, Golden, CO 80401, USA.

C Trent University, Department of Biology, 1600 Westbank Drive, Peterborough, ON, K9J 7B8, Canada.

D Present address: Empa – Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St Gallen, Switzerland.

E Present address: Michigan State University, Department of Microbiology and Molecular Genetics, 220 Trowbridge Road, East Lansing, MI 48824, USA.

F Corresponding author. Email: cmetcalfe@trentu.ca

Environmental Chemistry 11(4) 419-430 http://dx.doi.org/10.1071/EN14064
Submitted: 31 March 2014  Accepted: 27 May 2014   Published: 25 August 2014

Environmental context. Silver nanoparticles discharged with municipal wastewater may contaminate surface waters and harm aquatic ecosystems. We applied several analytical techniques to investigate the persistence and transformation of silver nanoparticles in a natural lake environment, and show, through multiple lines of evidence, that they persisted in lake water for several weeks after addition. The nanoparticles were releasing silver ions through dissolution, but these toxic ions were likely binding with natural organic matter in the lake water.

Abstract. Silver nanoparticles (AgNPs) may be released into surface waters, where they can affect aquatic organisms. However, agglomeration, dissolution, surface modifications and chemical speciation are important processes that control the toxicity of AgNPs. The purpose of the study was to apply various methods for monitoring the persistence and transformation of AgNPs added to littoral lake mesocosms. Analysis of total Ag showed that the levels in the mesocosms declined rapidly in the first 12 h after addition, followed by a slower rate of dissipation with a half-life (t1/2) of ~20 days. Analysis using single particle ICP-MS (spICP-MS) showed no evidence of extensive homo-agglomeration of AgNPs. The stability of AgNPs was likely due to the low ionic strength and high concentrations of humic-rich dissolved organic carbon (DOC) in the lake water. Analyses by spICP-MS, cloud point extraction (CPE) and asymmetric flow field flow fractionation coupled to ICP-MS (AF4-ICP-MS) all indicated that the concentrations of AgNP decreased over time, and the nanoparticles underwent dissolution. However, the concentrations of dissolved silver, which includes Ag+, were generally below detection limits when analysed by centrifugal ultrafiltration and spICP-MS. It is likely that the majority of free ions released by dissolution were complexing with natural organic material, such as DOC. An association with DOC would be expected to reduce the toxicity of Ag+ in natural waters. Overall, we were able to characterise AgNP transformations in natural waters at toxicologically relevant concentrations through the use of multiple analytical techniques that compensate for the limitations of the individual methods.


References

[1]  J. K. Schluesener, H. J. Schluesener, Nanosilver: application and novel aspects of toxicology. Arch. Toxicol. 2013, 87, 569.
Nanosilver: application and novel aspects of toxicology.CrossRef | 1:CAS:528:DC%2BC3sXhtlGmsrs%3D&md5=7d42b34cadba87367102aa842095806cCAS | 23344422PubMed | open url image1

[2]  B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A. A. Koelmans, S. J. Klaine, Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 2012, 31, 50.
Potential scenarios for nanomaterial release and subsequent alteration in the environment.CrossRef | 1:CAS:528:DC%2BC3MXhs1yktr7M&md5=b3977061ab625444afef30ec0a3da937CAS | 22038832PubMed | open url image1

[3]  T. M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, 4133.
Nanoparticle silver released into water from commercially available sock fabrics.CrossRef | 1:CAS:528:DC%2BD1cXktlKjsL4%3D&md5=16dae2000740ddd05f5125241df26259CAS | 18589977PubMed | open url image1

[4]  F. Gottschalk, T. Sun, B. Nowack, Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 2013, 181, 287.
Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies.CrossRef | 1:CAS:528:DC%2BC3sXhtFSlsrfP&md5=7be267556cba6b63f2cffd78eb64df51CAS | 23856352PubMed | open url image1

[5]  H. J. Allen, C. A. Impellitteri, D. A. Macke, J. L. Heckman, H. C. Poynton, J. M. Lazorchak, S. Govindaswamy, D. L. Roose, M. N. Nadagouda, Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ. Toxicol. Chem. 2010, 29, 2742.
Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna.CrossRef | 20890913PubMed | open url image1

[6]  E. Farmen, H. N. Mikkelsen, O. Evensen, J. Einset, L. S. Heier, B. O. Rosseland, B. Salbu, K. E. Tollefsen, D. H. Oughton, Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg L–1 concentrations of Ag nanoparticles. Aquat. Toxicol. 2012, 108, 78.
Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg L–1 concentrations of Ag nanoparticles.CrossRef | 1:CAS:528:DC%2BC38XhtFWqtLg%3D&md5=21db895ac3f304ac7386d092baad8038CAS | 22265610PubMed | open url image1

[7]  P. Das, M. A. Xenopoulos, C. J. Williams, M. E. Hoque, C. D. Metcalfe, Effects of silver nanoparticles on bacterial activity in natural waters. Environ. Toxicol. Chem. 2012, 31, 122.
Effects of silver nanoparticles on bacterial activity in natural waters.CrossRef | 1:CAS:528:DC%2BC3MXhs1yktr7F&md5=af6f62d2bed73936a33399541781ab2bCAS | 22012876PubMed | open url image1

[8]  E. Bae, H. Park, J. Lee, Y. Kim, J. Yoon, K. Park, K. Choi, J. Yi, Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties. Environ. Toxicol. Chem. 2010, 29, 2154.
Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties.CrossRef | 1:CAS:528:DC%2BC3cXht12jsLjI&md5=8e6d41efd1be3561cfdaf1baaf4aa38eCAS | 20872676PubMed | open url image1

[9]  A. J. Kennedy, M. A. Chappell, A. J. Bednar, A. C. Ryan, J. G. Laird, J. K. Stanley, J. A. Steevens, Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ. Sci. Technol. 2012, 46, 10 772.
Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC38Xht12ru7jF&md5=9f10630f2b1028032a8ac1652e972137CAS | open url image1

[10]  J. Gao, K. Powers, Y. Wang, H. Zhou, S. M. Roberts, B. M. Moudgil, B. Koopman, D. S. Barber, Influence of suwannee river humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere 2012, 89, 96.
Influence of suwannee river humic acid on particle properties and toxicity of silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC38XmvFKksLY%3D&md5=acdbdb9ab1400a15b7298a9c53e6eef0CAS | 22583785PubMed | open url image1

[11]  X. Li, J. J. Lenhari, H. W. Walker, Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 2012, 28, 1095.
Aggregation kinetics and dissolution of coated silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC3MXhsF2lsLvL&md5=67c234af5c1b3e895d938921df686cd0CAS | 22149007PubMed | open url image1

[12]  K. M. Newton, H. L. Puppala, C. L. Kitchens, V. L. Colvin, S. J. Klaine, Silver nanoparticle toxicity to daphnia magna is a function of dissolved silver concentration. Environ. Toxicol. Chem. 2013, 32, 2356.
Silver nanoparticle toxicity to daphnia magna is a function of dissolved silver concentration.CrossRef | 1:CAS:528:DC%2BC3sXhtlOku7nI&md5=1e2c8113550590e599fb20527651fd24CAS | 23761010PubMed | open url image1

[13]  X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, 1119.
Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.CrossRef | 1:CAS:528:DC%2BC3MXhsFygt7vN&md5=29f8517bdb955eb83c1aeb28945039f7CAS | 22148238PubMed | open url image1

[14]  Z. Xiu, J. Ma, P. J. J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 2011, 45, 9003.
Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions.CrossRef | 1:CAS:528:DC%2BC3MXht1ags77I&md5=21bcd55abf75149ae1c6ade56f89ce2eCAS | 21950450PubMed | open url image1

[15]  A. P. Gondikas, A. Morris, B. C. Reinsch, S. M. Marinakos, G. V. Lowry, H. Hsu-Kim, Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ. Sci. Technol. 2012, 46, 7037.
Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation.CrossRef | 1:CAS:528:DC%2BC38XksVKgu7Y%3D&md5=5152f219beee75322da049ba705c0411CAS | 22448900PubMed | open url image1

[16]  C. Levard, B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, G. E. Brown, Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, 5260.
Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.CrossRef | 1:CAS:528:DC%2BC3MXmtlCkuro%3D&md5=78a71476ddabcc48bd33cb3b00909833CAS | 21598969PubMed | open url image1

[17]  D. He, M. W. Bligh, T. D. Waite, Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ. Sci. Technol. 2013, 47, 9148.
Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC3sXhtFKlsLnN&md5=b6e1da30a77f87cf7d4939804f5f3cbaCAS | 23883329PubMed | open url image1

[18]  J. Liu, R. H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169.
Ion release kinetics and particle persistence in aqueous nano-silver colloids.CrossRef | 1:CAS:528:DC%2BC3cXit1Wqsrc%3D&md5=eda8eefb62b5e038312ad7a39ce5d935CAS | 20175529PubMed | open url image1

[19]  S. Kittler, C. Greulich, J. Diendorf, M. Koeller, M. Epple, Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010, 22, 4548.
Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions.CrossRef | 1:CAS:528:DC%2BC3cXpsV2ltbo%3D&md5=22d2ff31e22b7d8515908241adbb5e5aCAS | open url image1

[20]  X. Li, J. J. Lenhart, Aggregation and dissolution of silver nanoparticles in natural surface water. Environ. Sci. Technol. 2012, 46, 5378.
Aggregation and dissolution of silver nanoparticles in natural surface water.CrossRef | 1:CAS:528:DC%2BC38XlsFemsLk%3D&md5=609388f4bb944bc4f5c354e4018e892fCAS | 22502776PubMed | open url image1

[21]  D. Cleveland, S. E. Long, P. L. Pennington, E. Cooper, M. H. Fulton, G. I. Scott, T. Brewer, J. Davis, E. J. Petersen, L. Wood, Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci. Total Environ. 2012, 421–422, 267.
Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products.CrossRef | 22369864PubMed | open url image1

[22]  J. M. Unrine, B. P. Colman, A. J. Bone, A. P. Gondikas, C. W. Matson, Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of ag nanoparticles. Part 1. Aggregation and dissolution. Environ. Sci. Technol. 2012, 46, 6915.
Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of ag nanoparticles. Part 1. Aggregation and dissolution.CrossRef | 1:CAS:528:DC%2BC38XksFWgtr8%3D&md5=4f84488d2001c1419559786ab72ffcb8CAS | 22452441PubMed | open url image1

[23]  G. V. Lowry, B. P. Espinasse, A. R. Badireddy, C. J. Richardson, B. C. Reinsch, L. D. Bryant, A. J. Bone, A. Deonarine, S. Chae, M. Therezien, B. P. Colman, H. Hsu-Kim, E. S. Bernhardt, C. W. Matson, M. R. Wiesner, Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, 7027.
Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland.CrossRef | 1:CAS:528:DC%2BC38XkvVyqtbk%3D&md5=0fc37e2708edc8dea008fa6870a70b80CAS | 22463850PubMed | open url image1

[24]  F. von der Kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers, S. J. Klaine, A. A. Koelmans, N. Horne, J. M. Unrine, Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.
Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.CrossRef | 1:CAS:528:DC%2BC3MXhs1yksbfF&md5=2c389671872187661fdedaf142521bfcCAS | 22021021PubMed | open url image1

[25]  J. Liu, J. Chao, R. Liu, Z. Tan, Y. Yin, Y. Wu, G. Jiang, Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal. Chem. 2009, 81, 6496.
Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters.CrossRef | 1:CAS:528:DC%2BD1MXotFKmsr0%3D&md5=d1358259274587e92212587ad37e577eCAS | open url image1

[26]  M. E. Hoque, K. Khosravi, K. Newman, C. D. Metcalfe, Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. J. Chromatogr. A 2012, 1233, 109.
Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BC38Xkt1Cnt7s%3D&md5=fa07936c3b8ac9c5b5433d5f2f798c4aCAS | 22381889PubMed | open url image1

[27]  A. R. Poda, A. J. Bednar, A. J. Kennedy, A. Harmon, M. Hull, D. M. Mitrano, J. F. Ranville, J. Steevens, Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J. Chromatogr. A 2011, 1218, 4219.
Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXnslKgurY%3D&md5=d6cd8a0b645494d4ee347a445a1557a5CAS | 21247580PubMed | open url image1

[28]  F. Laborda, J. Jimenez-Lamana, E. Bolea, J. R. Castillo, Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011, 26, 1362.
Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXnvVaqtro%3D&md5=573f705c12ca8eb90989c17d60dc11d3CAS | open url image1

[29]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, J. F. Ranville, Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2012, 84, 4633.
Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry.CrossRef | open url image1

[30]  D. M. Mitrano, E. K. Lesher, A. Bednar, J. Monserud, C. P. Higgins, J. F. Ranville, Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem. 2012, 31, 115.
Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXhs1yktr7E&md5=9234fb3e71b09355b5b281b35d380b3dCAS | 22012920PubMed | open url image1

[31]  Tech note: zeta/ pH curves and isoelectric point data for standard nanoComposix silver citrate and PVP nanoparticle dispersions, v.1.0 2012 (nanoComposix: San Diego, CA). Available at http://cdn.shopify.com/s/files/1/0257/8237/files/Tech_Note_-_Zeta_and_pH_Curves_for_nanoComposix_Citrate_and_PVP_Capped_Silver_Nanoparticles.pdf [Verified 24 July 2014].

[32]  D. M. Mitrano, A. Barber, A. Bednar, P. Westerhoff, C. P. Higgins, J. F. Ranville, Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J. Anal. At. Spectrom. 2012, 27, 1131.
Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS).CrossRef | 1:CAS:528:DC%2BC38XosFSks7c%3D&md5=53dd85295d35e6494c621abc69bd3e31CAS | open url image1

[33]  E. Bolea, F. Laborda, J. R. Castillo, Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS. Anal. Chim. Acta 2010, 661, 206.
Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS.CrossRef | 1:CAS:528:DC%2BC3cXhtlOmtrs%3D&md5=258fd9d949f9a49e5f81fa94b1f1b094CAS | 20113737PubMed | open url image1

[34]  M. Delay, T. Dolt, A. Woellhaf, R. Sembritzki, F. H. Frimmel, Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J. Chromatogr. A 2011, 1218, 4206.
Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength.CrossRef | 1:CAS:528:DC%2BC3MXnslKgurg%3D&md5=75dec1e6a53d4c048e021e3e3e3b5d6dCAS | 21435646PubMed | open url image1

[35]  J. Dobias, R. Bernier-Latmani, Silver release from silver nanoparticles in natural waters. Environ. Sci. Technol. 2013, 47, 4140.
Silver release from silver nanoparticles in natural waters.CrossRef | 1:CAS:528:DC%2BC3sXktleksbo%3D&md5=5f4ab9c5241bfb9ce061f3af64f5aa95CAS | 23517230PubMed | open url image1

[36]  D. M. Mitrano, J. F. Ranville, A. Bednar, K. Kazor, A. S. Hering, C. P. Higgins, Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural and processed water using single particle ICP-MS (spICP-MS). Environ. Sci. Nano. 2014, 1, 248.
Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural and processed water using single particle ICP-MS (spICP-MS).CrossRef | 1:CAS:528:DC%2BC2cXotFyqtb4%3D&md5=35dfe6fbd6a9f98edb4f85ce74277a94CAS | open url image1

[37]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
Environmental transformations of silver nanoparticles: impact on stability and toxicity.CrossRef | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 22339502PubMed | open url image1

[38]  A. J. Bone, B. P. Colman, A. P. Gondikas, K. M. Newton, K. H. Harrold, R. M. Cory, J. M. Unrine, S. J. Klaine, C. W. Matson, R. T. Di Giulio, Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 2. Toxicity and Ag speciation. Environ. Sci. Technol. 2012, 46, 6925.
Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 2. Toxicity and Ag speciation.CrossRef | 1:CAS:528:DC%2BC38XnvV2ntrc%3D&md5=f5292e081ff21b06a06e063ac075e162CAS | 22680837PubMed | open url image1

[39]  Z. Wu, W. Tseng, Combined cloud point extraction and tween 20-stabilized gold nanoparticles for colorimetric assay of silver nanoparticles in environmental water. Anal. Methods. 2011, 3, 2915.
Combined cloud point extraction and tween 20-stabilized gold nanoparticles for colorimetric assay of silver nanoparticles in environmental water.CrossRef | 1:CAS:528:DC%2BC3MXhsFKlsrbJ&md5=a43bc37839aa8b06f9df479b0534ed49CAS | open url image1

[40]  R. Ma, C. Levard, S. M. Marinakos, Y. Cheng, J. Liu, F. M. Michel, G. E. Brown, G. V. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 752.
Size-controlled dissolution of organic-coated silver nanoparticles.CrossRef | 1:CAS:528:DC%2BC3MXhsFGqsrnF&md5=5af3c81d2b7d3a31dca335e610d1083bCAS | 22142034PubMed | open url image1

[41]  G. Hartmann, T. Baumgartner, M. Schuster, Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag+. Anal. Chem. 2014, 86, 790.
Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag+.CrossRef | 1:CAS:528:DC%2BC3sXhvVGktLbN&md5=6d013d7739a44630077a3e6a53f90e27CAS | 24274840PubMed | open url image1

[42]  L. Telgmann, C. D. Metcalfe, H. Hintelmann, Rapid size characterization of silver nanoparticles by single particle ICP-MS and isotope dilution. J. Anal. At. Spectrom. 2014, 29, 1265.
Rapid size characterization of silver nanoparticles by single particle ICP-MS and isotope dilution.CrossRef | 1:CAS:528:DC%2BC2cXhtVajtLnK&md5=86c42192148a1a3b5dde083c82a26131CAS | open url image1

[43]  G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
Transformations of nanomaterials in the environment.CrossRef | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=ffe75c0f5fd3c0eb997ff49828357fb0CAS | 22582927PubMed | open url image1

[44]  A. J. Bednar, A. R. Poda, D. M. Mitrano, A. J. Kennedy, E. P. Gray, J. F. Ranville, C. A. Hayes, F. H. Crocker, J. A. Steevens, Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. Talanta 2013, 104, 140.
Comparison of on-line detectors for field flow fractionation analysis of nanomaterials.CrossRef | 1:CAS:528:DC%2BC3sXmt1SmsLc%3D&md5=dc4807560df15dd3bcfd1da7372c7a6fCAS | 23597901PubMed | open url image1

[45]  S. Dubascoux, I. Le Hecho, M. P. Gautier, G. Lespes, On-line and off-line quantification of trace elements associated to colloids by as-fl-FFF and ICP-MS. Talanta 2008, 77, 60.
On-line and off-line quantification of trace elements associated to colloids by as-fl-FFF and ICP-MS.CrossRef | 1:CAS:528:DC%2BD1cXhtFCit7nP&md5=5d4f2b647f990486bd5378bbb75ae950CAS | 18804599PubMed | open url image1

[46]  C. Babiarz, J. Hurley, D. Krabbenhoft, C. Gilmour, B. Branfireun, Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff. Sci. Total Environ. 2003, 304, 295.
Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff.CrossRef | 1:CAS:528:DC%2BD3sXit12itrY%3D&md5=0e12983db1cfc1bb4978aaba2e463bddCAS | 12663191PubMed | open url image1

[47]  H. Hagendorfer, R. Kaegi, M. Parlinska, B. Sinnet, C. Ludwig, A. Ulrich, Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach – a comparison to transmission electron microscopy and batch dynamic light scattering. Anal. Chem. 2012, 84, 2678.
Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach – a comparison to transmission electron microscopy and batch dynamic light scattering.CrossRef | 1:CAS:528:DC%2BC38Xhs1Ontbw%3D&md5=bb69f2f365ee0eac8fd85f5f0e72a83fCAS | 22304567PubMed | open url image1



Supplementary MaterialSupplementary Material (1.1 MB) Export Citation Cited By (20)