Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Effects of myo-inositol hexakisphosphate and orthophosphate adsorption on aggregation of CeO2 nanoparticles: roles of pH and surface coverage

Biao Wan A , Yupeng Yan A , Fan Liu A , Wenfeng Tan A , Jiajie He A and Xionghan Feng A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

B Corresponding author. Email address: fxh73@mail.hzau.edu.cn

Environmental Chemistry 13(1) 34-42 https://doi.org/10.1071/EN15027
Submitted: 8 February 2015  Accepted: 10 April 2015   Published: 28 July 2015

Environmental context. To understand the behaviour and fate of nanoparticles (NPs) in the natural environment requires knowledge of their aggregation state under environmentally relevant conditions. This work investigates the influence of myo-inositol hexakisphosphate and orthophosphate on the colloidal stability of CeO2 NPs, and shows that adsorption of organic and inorganic phosphorus plays an important role on the interaction between the nanoparticles. Surface phosphorus coverage should be considered when predicting the fate of CeO2 NPs and other similar NPs in the environment.

Abstract. The effects of myo-inositol hexakisphosphate (IHP) and orthophosphate (Pi) adsorption on aggregation and dispersion of CeO2 nanoparticles (NPs) in suspension and the underlying mechanism were investigated. The results show that IHP and Pi play a significant role in the colloidal chemistry behaviour of CeO2 NPs through inner-sphere complex formation on adsorption as indicated by concurrent hydroxyl release, zeta (ζ) potential measurements and in situ attenuated total reflectance Fourier-transform infrared spectroscopy. The ratio of IHP/Pi adsorption density suggests that IHP may complex on the CeO2 surface through four of its six phosphate groups with the other two free and dissociated. Sedimentation and aggregation of CeO2 NPs in suspension are mainly dependent on their surface potentials, which are greatly regulated by pH and surface phosphorous coverage. At pH 3.0, IHP led to aggregation of CeO2 NPs at a loading lower than 0.15 μmol L–1, whereas a higher IHP loading made them disperse again. However, Pi adsorption merely caused an increase of the aggregate size of CeO2 NPs. At pH 7.0, both IHP and Pi can apparently stabilise the suspension of CeO2 NPs from aggregation by alteration of the zeta potential from near zero down to –38 mV. The effect of IHP on the aggregation and dispersion of CeO2 NPs is much greater than that of Pi, which agrees well with calculations from Derjaguin–Landau–Verwey–Overbeek (DLVO) theory.

Additional keywords: inner-sphere complex, sedimentation, surface phosphorous coverage


References

[1]  G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
Transformations of nanomaterials in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=202ab7784206ba66e3867533b5046439CAS | 22582927PubMed |

[2]  B. Collin, M. Auffan, A. C. Johnson, I. Kaur, A. A. Keller, A. Lazareva, J. R. Lead, X. Ma, R. C. Merrifield, C. Svendsen, J. C. White, J. M. Unrine, Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci. Nano 2014, 1, 533.
Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsleltLzN&md5=18753cfd2ce8e1d13cb347df51446bceCAS |

[3]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=db8b539a7b7c8782cda2e5885df35098CAS | 19086204PubMed |

[4]  G. Cornelis, J. K. Kirby, D. Beak, D. Chittleborough, M. J. McLaughlin, A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Environ. Chem. 2010, 7, 298.
A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOnsrw%3D&md5=5fd7d21a6d0ee84c70767e61002da7b4CAS |

[5]  J. Hawthorne, R. De la Torre Roche, B. Xing, L. A. Newman, X. Ma, S. Majumdar, J. Gardea-Torresdey, J. C. White, Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ. Sci. Technol. 2014, 48, 13102.
Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2ms7nE&md5=8dd45ca70bc40b02c37f7792cc7b407eCAS | 25340623PubMed |

[6]  A. Helland, M. Scheringer, M. Siegrist, H. G. Kastenholz, A. Wiek, R. W. Scholz, Risk assessment of engineered nanomaterials: a survey of industrial approaches. Environ. Sci. Technol. 2008, 42, 640.
Risk assessment of engineered nanomaterials: a survey of industrial approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVamsbvM&md5=5e7369ff557fbdd308de7ea9fc69c976CAS | 18284176PubMed |

[7]  N. J. Rogers, N. M. Franklin, S. C. Apte, G. E. Batley, B. M. Angel, J. R. Lead, M. Baalousha, Physico-chemical behavior and algal toxicity of nanoparticulate CeO2 in freshwater. Environ. Chem. 2010, 7, 50.
Physico-chemical behavior and algal toxicity of nanoparticulate CeO2 in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLs%3D&md5=e44cacbad5cb93c473db3eb2be80962eCAS |

[8]  J. T. Quik, I. Lynch, K. Van Hoecke, C. J. Miermans, K. A. De Schamphelaere, C. R. Janssen, K. A. Dawson, M. A. Stuart, D. Van De Meent, Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 2010, 81, 711.
Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cmu7rK&md5=0c9ed07e7b283aab95318f91f51f8330CAS | 20728203PubMed |

[9]  K. Li, Y. Chen, Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. J. Hazard. Mater. 2012, 209–210, 264.
Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling.Crossref | GoogleScholarGoogle Scholar | 22285915PubMed |

[10]  W. Zhang, J. Crittenden, K. Li, Y. Chen, Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation. Environ. Sci. Technol. 2012, 46, 7054.
Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFeitA%3D%3D&md5=46ca7daefe1e3bfb4e827c45c36635afCAS | 22260181PubMed |

[11]  Z. Li, E. Sahle-Demessie, A. A. Hassan, G. A. Sorial, Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res. 2011, 45, 4409.
Transport and deposition of CeO2 nanoparticles in water-saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1altLw%3D&md5=1574ed0784294b43529d8c70926faa84CAS | 21708395PubMed |

[12]  G. Cornelis, B. Ryan, M. J. McLaughlin, J. K. Kirby, D. Beak, D. Chittleborough, Solubility and batch retention of CeO2 nanoparticles in soils. Environ. Sci. Technol. 2011, 45, 2777.
Solubility and batch retention of CeO2 nanoparticles in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqur0%3D&md5=f8831e44487fa49acf31c3f2c1cc059dCAS | 21405081PubMed |

[13]  N. Manier, A. Bado-Nilles, P. Delalain, O. Aguerre-Chariol, P. Pandard, Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ. Pollut. 2013, 180, 63.
Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGrtLvF&md5=4738b4652a4e448565bcf5a3b45a6e02CAS | 23727569PubMed |

[14]  K. Van Hoecke, K. A. De Schamphelaere, P. Van der Meeren, G. Smagghe, C. R. Janssen, Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ. Pollut. 2011, 159, 970.
Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFehsbc%3D&md5=243fd85636ed347c9494291fa6cd5eb5CAS | 21247678PubMed |

[15]  W. Zhang, U. S. Rattanaudompol, H. Li, D. Bouchard, Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles. Water Res. 2013, 47, 1793.
Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslajtbg%3D&md5=0463abe0b0a279d6813e4ee80bf22b55CAS | 23374256PubMed |

[16]  K. M. Buettner, C. I. Rinciog, S. E. Mylon, Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 74.
Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Gktbc%3D&md5=1a0eedab6f7ed783c2705fbb64a78fbdCAS |

[17]  K. Li, W. Zhang, Y. Huang, Y. Chen, Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. J. Nanopart. Res. 2011, 13, 6483.
Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Sqt7jP&md5=b5ce345745e609e2c1dfa91c086f6de0CAS |

[18]  R. Olsson, R. Giesler, J. S. Loring, P. Persson, Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions. Langmuir 2010, 26, 18760.
Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktr3E&md5=23e29241495e1e6a12d6a68aaac4db8fCAS | 21087005PubMed |

[19]  K. C. Ruttenberg, D. J. Sulak, Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater. Geochim. Cosmochim. Acta 2011, 75, 4095.
Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotleksL8%3D&md5=769a9dc729ee47035bda4a73832d045cCAS |

[20]  B. L. Turner, M. J. Papházy, P. M. Haygarth, I. D. McKelvie, Inositol phosphates in the environment. Philos. Trans. R. Soc. Lond., B 2002, 357, 449.
Inositol phosphates in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVSls7k%3D&md5=8f5ea8521abdb7b09be66cd024d8e7bbCAS |

[21]  B. L. Turner, A. W. Cheesman, H. Y. Godage, A. M. Riley, B. V. L. Potter, Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy. Environ. Sci. Technol. 2012, 46, 4994.
Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xltlags7w%3D&md5=09a433d021c2f18589329ca74b867cb2CAS | 22489788PubMed |

[22]  L. Celi, M. Presta, F. Ajmone-Marsan, E. Barberis, Effects of pH and electrolyte on inositol hexaphosphate interaction with goethite. Soil Sci. Soc. Am. J. 2001, 65, 753.
Effects of pH and electrolyte on inositol hexaphosphate interaction with goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFWktLg%3D&md5=abab8e24edba3cae402563d3df299e12CAS |

[23]  M. Ognalaga, E. Frossard, F. Thomas, Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite. Soil Sci. Soc. Am. J. 1994, 58, 332.
Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlCisrg%3D&md5=a51bd499d85a1ac4a458659e18530d5aCAS |

[24]  Y. P. Yan, F. Liu, W. Li, F. Liu, X. H. Feng, D. L. Sparks, Sorption and desorption characteristics of organic phosphates of different structures on aluminum (oxyhydr)oxides. Eur. J. Soil Sci. 2014, 65, 308.
Sorption and desorption characteristics of organic phosphates of different structures on aluminum (oxyhydr)oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlKltro%3D&md5=cbccda62b3f55273f567012837afbae2CAS |

[25]  Y. P. Yan, W. Li, J. Yang, A. Zheng, F. Liu, X. H. Feng, D. L. Sparks, Mechanism of myo-inositol hexakisphosphate sorption on amorphous aluminum hydroxide: spectroscopic evidence for rapid surface precipitation. Environ. Sci. Technol. 2014, 48, 6735.
Mechanism of myo-inositol hexakisphosphate sorption on amorphous aluminum hydroxide: spectroscopic evidence for rapid surface precipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2ktbs%3D&md5=b9e59b7f5c58e90c70397149b08a3522CAS |

[26]  L. Celi, S. Lamacchia, F. Ajmone-Marsan, E. Barberis, Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena. Soil Sci. 1999, 164, 574.
Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslSju7g%3D&md5=daada293eff2bcf99650b495bb1d4a07CAS |

[27]  C. Giaveno, L. Celi, A. E. Richardson, R. J. Simpson, E. Barberis, Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol. Biochem. 2010, 42, 491.
Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqtL8%3D&md5=42b374f0c985e062385072100f33d43eCAS |

[28]  M. Martin, L. Celi, E. Barberis, Determination of low concentrations of organic phosphorus in soil solution. Commun. Soil Sci. Plant Anal. 1999, 30, 1909.
Determination of low concentrations of organic phosphorus in soil solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVynt7g%3D&md5=6255e5c4dad46961351a173ebb546b31CAS |

[29]  J. Murphy, J. P. Riley, A modified single-solution method for the determination of phosphates in natural water. Anal. Chim. Acta 1962, 27, 31.
A modified single-solution method for the determination of phosphates in natural water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksVyntr8%3D&md5=d0f05b49958d2b10ffd20da33df8c3feCAS |

[30]  K. Q. Liu, C. H. Kuang, M. Q. Zhong, Y. Q. Shi, F. Chen, Synthesis, characterization and UV-shielding property of polystyrene-embedded CeO2 nanoparticles. Opt. Mater. 2013, 35, 2710.
Synthesis, characterization and UV-shielding property of polystyrene-embedded CeO2 nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtl2qsL7N&md5=42a3ea0ae7d13d954bb63aaa57db37e0CAS |

[31]  Y. Zhang, Y. S. Chen, P. Westerho, K. Hristovski, J. Crittenden, Stability of commercial metal oxide nanoparticles in water. Water Res. 2008, 42, 2204.
Stability of commercial metal oxide nanoparticles in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVCitbY%3D&md5=2d4340ad894ed190fca6e3c0e3ebe0d2CAS | 18164742PubMed |

[32]  Y. Zhang, Y. S. Chen, P. Westerho, J. Crittenden, Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009, 43, 4249.
Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWks73O&md5=d50af3bb242121113729c38528346d33CAS | 19577783PubMed |

[33]  M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, K. Lee, Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloids Surf. A Physicochem. Eng. Asp. 2010, 359, 39.
Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivV2ju74%3D&md5=8dd8aa526197f8c1f221884590f387c5CAS |

[34]  T. Kim, K. Lee, M. S. Gong, S. W. Joo, Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir 2005, 21, 9524.
Control of gold nanoparticle aggregates by manipulation of interparticle interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslCiu7w%3D&md5=b33644076e53e945f1938ad6b3627ce9CAS | 16207031PubMed |

[35]  T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, G. V. Lowry, Aggregation and sedimentation of aqueous nanoscale zero-valent iron dispersions. Environ. Sci. Technol. 2007, 41, 284.
Aggregation and sedimentation of aqueous nanoscale zero-valent iron dispersions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit7nJ&md5=b517ff5eafe97b7fa083205da85b5280CAS | 17265960PubMed |

[36]  B. P. Singh, R. Menchavez, C. Takai, M. Fuji, M. Takahashi, Stability of dispersions of colloidal alumina particles in aqueous suspensions. J. Colloid Interface Sci. 2005, 291, 181.
Stability of dispersions of colloidal alumina particles in aqueous suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCksLjF&md5=eac6aff8a550fa188036fb85f4dc3a86CAS | 15964586PubMed |

[37]  S. Patil, S. C. Kuiry, S. Seal, R. Vanfleet, Synthesis of nanocrystalline ceria particles for high-temperature oxidation-resistant coating. J. Nanopart. Res. 2002, 4, 433.
Synthesis of nanocrystalline ceria particles for high-temperature oxidation-resistant coating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2ltbw%3D&md5=73eaa164094118ff628181605918e8d5CAS |

[38]  D. A. Pelletier, A. K. Suresh, G. A. Holton, C. McKeown, W. Wang, B. Gu, N. P. Mortensen, D. P. Allison, D. C. Joy, M. R. Allison, S. D. Brown, T. J. Phelps, M. J. Doktycz, Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 2010, 76, 7981.
Effects of engineered cerium oxide nanoparticles on bacterial growth and viability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGks7g%3D&md5=37fa1155ea73043e24b762297618c530CAS | 20952651PubMed |

[39]  L. A. De Faria, S. Trasatti, The point of zero charge of CeO2. J. Colloid Interface Sci. 1994, 167, 352.
The point of zero charge of CeO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtFOqsL0%3D&md5=d84a2581c4559a6420a7c68beb2abddfCAS |

[40]  R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications 1981 (Academic Press: London).

[41]  X. H. Guan, C. Shang, J. Zhu, G. H. Chen, ATR-FTIR investigation on the complexation of myo-inositol hexaphosphate with aluminum hydroxide. J. Colloid Interface Sci. 2006, 293, 296.
ATR-FTIR investigation on the complexation of myo-inositol hexaphosphate with aluminum hydroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aht77J&md5=938289580f391712e6982022b1a0a9dbCAS | 16111695PubMed |

[42]  B. B. Johnson, E. Quill, M. J. Angove, An investigation of the mode of sorption of inositol hexaphosphate to goethite. J. Colloid Interface Sci. 2012, 367, 436.
An investigation of the mode of sorption of inositol hexaphosphate to goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2ltb3K&md5=434d50bcabffc5045447c51cb3e9c220CAS | 22035760PubMed |

[43]  E. J. Elzinga, D. L. Sparks, Phosphate adsorption onto hematite: an in-situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid Interface Sci. 2007, 308, 53.
Phosphate adsorption onto hematite: an in-situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFCktLg%3D&md5=659c4a8e91e30eece7c349a8c5b35dfeCAS | 17254592PubMed |

[44]  M. I. Tejedor-Tejedor, M. A. Anderson, The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir 1990, 6, 602.
The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsVKhtrc%3D&md5=306d1a903750f5814a4cef1f31b727c5CAS |

[45]  I. N. Martyanov, E. N. Savinov, K. J. Klabunde, Influence of solution composition and ultrasonic treatment on optical spectra of TiO2 aqueous suspensions. J. Colloid Interface Sci. 2003, 267, 111.
Influence of solution composition and ultrasonic treatment on optical spectra of TiO2 aqueous suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsl2qsLk%3D&md5=cb9bf7e5fd7871ddb310369d0b18cf0eCAS | 14554173PubMed |

[46]  I. A. Mudunkotuwa, V. H. Grassian, Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle–nanoparticle interactions. J. Am. Chem. Soc. 2010, 132, 14986.
Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle–nanoparticle interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1eku7rE&md5=14c27a63bca73b4283da15d377b1e547CAS | 20919713PubMed |

[47]  J. M. Pettibone, D. M. Cwiertny, M. Scherer, V. H. Grassian, Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size and nanoparticle aggregation. Langmuir 2008, 24, 6659.
Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size and nanoparticle aggregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGqt70%3D&md5=0aacf492bbaa80cf21af9617409db7e0CAS | 18537279PubMed |

[48]  S. B. Johnson, G. E. Brown, T. W. Healy, P. J. Scales, Adsorption of organic matter at mineral/water interfaces: 6. Effect of inner-sphere versus outer-sphere adsorption on colloidal stability. Langmuir 2005, 21, 6356.
Adsorption of organic matter at mineral/water interfaces: 6. Effect of inner-sphere versus outer-sphere adsorption on colloidal stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslOmu70%3D&md5=e09c04e4e191dac4105ddb8f81e81302CAS | 15982042PubMed |

[49]  P. C. Hidber, T. J. Graule, L. J. Gauckler, Citric acid – a dispersant for aqueous alumina suspensions. J. Am. Ceram. Soc. 1996, 79, 1857.
Citric acid – a dispersant for aqueous alumina suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFOitrc%3D&md5=3becb665c849ac1cf5493a96f1fc1e06CAS |