Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Theoretical study of the gaseous hydrolysis of NO2 in the presence of NH3 as a source of atmospheric HONO

Xu Wang A , Feng-Yang Bai A , Yan-Qiu Sun A , Rong-Shun Wang A , Xiu-Mei Pan A C and Fu-Ming Tao B C

A Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, 130024 Changchun, P.R. China.

B Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834, USA.

C Corresponding authors. Email: panxm460@nenu.edu.cn; ftao@fullerton.edu

Environmental Chemistry 13(4) 611-622 http://dx.doi.org/10.1071/EN15076
Submitted: 7 April 2015  Accepted: 18 July 2015   Published: 23 November 2015

Environmental context. Nitrous acid is an important atmospheric trace gas, but the sources and the chemical mechanisms of its production are not well understood. This study explores the effects of ammonia and water on the hydrolysis of nitrogen dioxide and nitrous acid production. The calculated results show that ammonia is more effective than water in promoting the hydrolysis reaction of nitrogen dioxide.

Abstract. The effects of ammonia and water molecules on the hydrolysis of nitrogen dioxide as well as product accumulation are investigated by theoretical calculations of three series of the molecular clusters 2NO2mH2O (m = 1–3), 2NO2mH2O–NH3 (m = 1, 2) and 2NO2mH2O–2NH3 (m = 1, 2). The gas-phase reaction 2NO2 + H2O → HONO + HNO3 is thermodynamically unfavourable. The additional water or ammonia in the clusters can not only stabilise the products by forming stable complexes, but also reduce the energy barrier for the reaction. There is a considerable energy barrier for the reaction at the reactant cluster 2NO2–H2O: 11.7 kcal mol–1 (1 kcal mol–1 = 4.18 kJ mol–1). With ammonia and an additional water in the cluster, 2NO2–H2O–NH3, the thermodynamically stable products t-HONO + NH4NO3–H2O can be formed without an energy barrier. With two ammonia molecules, as in the cluster 2NO2mH2O–2NH3 (m = 1, 2), the reaction is barrierless and the product complex NH4NO2–NH4NO3 is further stabilised. The present study, including natural bond orbital analysis on a series of species, shows that ammonia is more effective than water in promoting the hydrolysis reaction of NO2. The product cluster NH4NO2–NH4NO3 resembles an alternating layered structure containing the ion units NH4+NO2 and NH4+NO3. The decomposition processes of NH4NO2–NH4NO3 and its monohydrate are all spontaneous and endothermic.


References

[1]  B. J. Finlayson-Pitts, J. N. Pitts Jr, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications 2000 (Academic Press: San Diego, CA).

[2]  A. M. Winer, H. W. Biermann, Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California South Coast air basin. Res. Chem. Intermed. 1994, 20, 423.
Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California South Coast air basin.CrossRef | 1:CAS:528:DyaK2cXks1Cnsb8%3D&md5=99afcd6fb657959320e9ac0a8b87958fCAS | open url image1

[3]  T. W. Kirchstetter, R. A. Harley, D. Littlejohn, Measurement of nitrous acid in motor vehicle exhaust. Environ. Sci. Technol. 1996, 30, 2843.
Measurement of nitrous acid in motor vehicle exhaust.CrossRef | 1:CAS:528:DyaK28XksFKjsr8%3D&md5=d7c7fffe41857a9fe66608eaba8d5fdcCAS | open url image1

[4]  F. Stuhl, H. Niki, Flash photochemical study of the reaction OH + NO + M using resonance fluorescent detection of OH. J. Chem. Phys. 1972, 57, 3677.
Flash photochemical study of the reaction OH + NO + M using resonance fluorescent detection of OH.CrossRef | 1:CAS:528:DyaE3sXit1Cnsg%3D%3D&md5=6eeeede196e40a0d657a727f0e941eaaCAS | open url image1

[5]  P. Pagsberg, E. Bjergbakke, E. Ratajczak, A. Sillesen, Kinetics of the gas phase reaction OH + NO (+M) → HONO(+M) and the determination of the UV absorption cross-sections of HONO. Chem. Phys. Lett. 1997, 272, 383.
Kinetics of the gas phase reaction OH + NO (+M) → HONO(+M) and the determination of the UV absorption cross-sections of HONO.CrossRef | 1:CAS:528:DyaK2sXktVWqtLk%3D&md5=88d86d3410c12c0cbfba234ffcb1748dCAS | open url image1

[6]  M. Ammann, M. Kalberer, D. T. Jost, L. Tobler, E. Rössler, D. Piguet, H. W. Gäggeler, U. Baltensperger, Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 1998, 395, 157.
Heterogeneous production of nitrous acid on soot in polluted air masses.CrossRef | 1:CAS:528:DyaK1cXmtVersro%3D&md5=2f6e9a551d769334530c955aaeaf4864CAS | open url image1

[7]  M. Kalberer, M. Ammann, F. Arens, H. W. Gäggeler, U. Baltensperger, Heterogeneous formation of nitrous acid (HONO) on soot aerosol particles. J. Geophys. Res. Atmos. 1999, 104, 13 825.
Heterogeneous formation of nitrous acid (HONO) on soot aerosol particles.CrossRef | 1:CAS:528:DyaK1MXkt1Ort7s%3D&md5=8350e3511efe6b1c96d302c02e0e8043CAS | open url image1

[8]  C. A. Longfellow, A. R. Ravishankara, D. R. Hanson, Reactive uptake on hydrocarbon soot: focus on NO2. J. Geophys. Res. 1999, 104, 13 833.
Reactive uptake on hydrocarbon soot: focus on NO2.CrossRef | 1:CAS:528:DyaK1MXkt1Ort7g%3D&md5=a28211425147bbe553a9dd0b47514ec2CAS | open url image1

[9]  B. J. Finlayson-Pitts, L. M. Wingen, A. L. Sumner, D. Syomin, K. A. Ramazan, The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys. Chem. Chem. Phys. 2003, 5, 223.
The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism.CrossRef | 1:CAS:528:DC%2BD3sXot1U%3D&md5=b04da02850926867ab38b24d376b7ee9CAS | open url image1

[10]  K. Stemmler, M. Ammann, C. Donders, J. Kleffmann, C. George, Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 2006, 440, 195.
Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid.CrossRef | 1:CAS:528:DC%2BD28XitFGitbk%3D&md5=b94cbb203787c11fec2789428a5146fbCAS | 16525469PubMed | open url image1

[11]  J. Notholt, J. Hjorth, F, Raes, Formation of HNO2 on aerosol surfaces during foggy periods in the presence of NO and NO2. Atmos. Environ. 1992, 26, 211.
Formation of HNO2 on aerosol surfaces during foggy periods in the presence of NO and NO2.CrossRef | open url image1

[12]  M. D. Andrés-Hernández, J. Notholt, J. Hjorth, O. Schrems, A DOAS study on the origin of nitrous acid at urban and non-urban sites. Atmos. Environ. 1996, 30, 175.
A DOAS study on the origin of nitrous acid at urban and non-urban sites.CrossRef | open url image1

[13]  G. Lammel, J. N. Cape, Nitrous acid and nitrite in the atmosphere. Chem. Soc. Rev. 1996, 25, 361.
Nitrous acid and nitrite in the atmosphere.CrossRef | 1:CAS:528:DyaK2sXltFen&md5=cc4d4d45ace99501c5ce369aee7ae5ffCAS | open url image1

[14]  J. Stutz, B. Alicke, R. Ackerman, A. Geyer, S. Wang, A. B. White, E. J. Williams, C. W. Spicer, J. D. Fast, Relative humidity dependence of HONO chemistry in urban areas. J. Geophys. Res. 2004, 109, D03307.
Relative humidity dependence of HONO chemistry in urban areas.CrossRef | open url image1

[15]  K. Acker, D. Beysens, D. Möller, Nitrite in dew, fog, cloud and rain water: an indicator for heterogeneous processes on surfaces. Atmos. Res. 2008, 87, 200.
Nitrite in dew, fog, cloud and rain water: an indicator for heterogeneous processes on surfaces.CrossRef | 1:CAS:528:DC%2BD1cXitFarsrs%3D&md5=a2ee913b10046977a267e0daec4eadc4CAS | open url image1

[16]  H. Wang, D. Shooter, Atmospheric concentrations of HCl, HONO, HNO3, SO2 and NH3 in Auckland, New Zealand. Clean Air Environ. Qual. 2004, 38, 28. open url image1

[17]  K. A. Ramazan, L. M. Wingen, Y. Miller, G. M. Chaban, R. B. Gerber, S. S. Xantheas, B. J. Finlayson-Pitts, New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. J. Phys. Chem. A 2006, 110, 6886.
| 1:CAS:528:DC%2BD28Xhs1Cju78%3D&md5=acbec1864630bc09af3f6f3adc7410e0CAS | 16722704PubMed | open url image1

[18]  M. T. Cheng, S. P. Chen, Y. C. Lin, C. C. Jung, C. L. Horng, Concentrations and formation rates of ambient nitrous acid in Taichung City, Taiwan. Environ. Eng. Sci. 2008, 25, 1149.
Concentrations and formation rates of ambient nitrous acid in Taichung City, Taiwan.CrossRef | 1:CAS:528:DC%2BD1cXht1SlsbjJ&md5=834eed2ff3df49b5af9b29107c6c1c5eCAS | open url image1

[19]  Y. Miller, B. J. Finlayson-Pitts, R. B. Gerber, Ionization of N2O4 in contact with water: mechanism, time scales and atmospheric implications. J. Am. Chem. Soc. 2009, 131, 12 180.
Ionization of N2O4 in contact with water: mechanism, time scales and atmospheric implications.CrossRef | 1:CAS:528:DC%2BD1MXkvFers70%3D&md5=e7fd592b9ed9453389d17d35f8de3f34CAS | open url image1

[20]  B. Q. Zhang, F. M. Tao, Direct homogeneous nucleation of NO2, H2O, and NH3 for the production of ammonium nitrate particles and HONO gas. Chem. Phys. Lett. 2010, 489, 143.
Direct homogeneous nucleation of NO2, H2O, and NH3 for the production of ammonium nitrate particles and HONO gas.CrossRef | 1:CAS:528:DC%2BC3cXkt1Kgtbo%3D&md5=77d0e6e1876eb71ca067e963d112ceceCAS | open url image1

[21]  B. H. Lee, G. W. Santoni, E. C. Wood, S. C. Herndon, R. C. Miake-Lye, M. S. Zahniser, S. C. Wofsy, J. W. Munger, Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment. Environ. Sci. Technol. 2011, 45, 7648.
Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.CrossRef | 1:CAS:528:DC%2BC3MXhtVCrsbvP&md5=63c980225acd0e51b4eec994e2912712CAS | 21809872PubMed | open url image1

[22]  G. F. Luo, X. B. Chen, Ground-state intermolecular proton transfer of N2O4and H2O: an important source of atmospheric hydroxyl radical? J. Phys. Chem. Lett. 2012, 3, 1147.
Ground-state intermolecular proton transfer of N2O4and H2O: an important source of atmospheric hydroxyl radical?CrossRef | 1:CAS:528:DC%2BC38XlsVaru78%3D&md5=3b33eb87aa72d4c51b3f5ee6e2047ba8CAS | open url image1

[23]  S. S. Wang, R. Zhou, H. Zhao, Z. R. Wang, L. M. Chen, B. Zhou, Long-term observation of atmospheric nitrous acid (HONO) and its implication to local NO2 levels in Shanghai, China. Atmos. Environ. 2013, 77, 718.
Long-term observation of atmospheric nitrous acid (HONO) and its implication to local NO2 levels in Shanghai, China.CrossRef | 1:CAS:528:DC%2BC3sXht1altrvO&md5=8ff7e2637f9747f373c208bdfa2ba2d6CAS | open url image1

[24]  R. Oswald, M. Ermel, K. Hens, A. Novelli, H. G. Ouwersloot, P. Paasonen, T. Petäjä, M. Sipilä, P. Keronen, J. Bäck, R. Königstedt, Z. Hosaynali Beygi, H. Fischer, B. Bohn, D. Kubistin, H. Harder, M. Martinez, J. Williams, T. Hoffmann, I. Trebs, M. Sörgel, A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland. Atmos. Chem. Phys. 2015, 15, 799.
A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland.CrossRef | open url image1

[25]  F. M. Tao, Solvent effects of individual water molecules, in Water in Confining Geometries 2003, pp. 79–99 (Springer-Verlag: Berlin)10.1007/978-3-662-05231-0

[26]  R. Cazar, A. Jamka, F. M. Tao, Proton transfer reaction of hydrogen chloride with ammonia: is it possible in the gas phase? Chem. Phys. Lett. 1998, 287, 549.
Proton transfer reaction of hydrogen chloride with ammonia: is it possible in the gas phase?CrossRef | 1:CAS:528:DyaK1cXjtl2lsLc%3D&md5=a85e1ebf76792f97f674920bda0b8beeCAS | open url image1

[27]  J. A. Snyder, D. Hanway, J. Mendez, A. J. Jamka, F. M. Tao, A density functional theory study of the gas-phase hydrolysis of dinitrogen pentoxide. J. Phys. Chem. A 1999, 103, 9355.
A density functional theory study of the gas-phase hydrolysis of dinitrogen pentoxide.CrossRef | 1:CAS:528:DyaK1MXmvFCrsLc%3D&md5=a7f0549a263b7fc16e0676a0fb95b28cCAS | open url image1

[28]  R. A. Cazar, A. J. Jamka, F. M. Tao, Ab initio investigation of proton transfer in ammonia–hydrogen chloride and the effect of water molecules in the gas phase. J. Phys. Chem. A 1998, 102, 5117.
Ab initio investigation of proton transfer in ammonia–hydrogen chloride and the effect of water molecules in the gas phase.CrossRef | 1:CAS:528:DyaK1cXjs1SrsLk%3D&md5=80ba6d4a3c511b6c6df110748d1f67c3CAS | open url image1

[29]  J. A. Snyder, R. A. Cazar, A. J. Jamka, F. M. Tao, Ab initio study of gas-phase proton transfer in ammonia–hydrogen halides and the influence of water molecules. J. Phys. Chem. A 1999, 103, 7719.
| 1:CAS:528:DyaK1MXlsFSrtrw%3D&md5=a333394475889d5b0d3e2295d5f689f0CAS | open url image1

[30]  M. T. Nguyen, A. J. Jamka, R. A. Cazar, F. M. Tao, Structure and stability of the nitric acid–ammonia complex in the gas phase and in water. J. Phys. Chem. 1997, 106, 8710.
Structure and stability of the nitric acid–ammonia complex in the gas phase and in water.CrossRef | 1:CAS:528:DyaK2sXjsV2rsb0%3D&md5=acb7c76878418f6f8cc87a2785e2351fCAS | open url image1

[31]  F. M. Tao, Gas-phase proton-transfer reaction of nitric acid–ammonia and the role of water. J. Chem. Phys. 1998, 108, 193.
Gas-phase proton-transfer reaction of nitric acid–ammonia and the role of water.CrossRef | 1:CAS:528:DyaK1cXhtVSlsg%3D%3D&md5=8d95b1579c7b39cda9082fc4165e16a1CAS | open url image1

[32]  A. Chou, Z. Li, F. M. Tao, Density functional studies of the formation of nitrous acid from the reaction of nitrogen dioxide and water vapor. J. Phys. Chem. A 1999, 103, 7848.
Density functional studies of the formation of nitrous acid from the reaction of nitrogen dioxide and water vapor.CrossRef | 1:CAS:528:DyaK1MXls1OjtrY%3D&md5=794122a836e6d57fbc60335686cda670CAS | open url image1

[33]  G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, R. Kincaid, Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet. Atmos. Environ. 2002, 36, 1799.
Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet.CrossRef | 1:CAS:528:DC%2BD38XivValt7c%3D&md5=8e0e1e5cba63d2b0fdc1ac780c138e3bCAS | open url image1

[34]  S. M. Wilson, M. L. Serre, Examination of atmospheric ammonia levels near hog CAFOs, homes, and schools in eastern North Carolina. Atmos. Environ. 2007, 41, 4977.
Examination of atmospheric ammonia levels near hog CAFOs, homes, and schools in eastern North Carolina.CrossRef | 1:CAS:528:DC%2BD2sXmtVWhtbY%3D&md5=236045481572f92becc16fb678e4468cCAS | open url image1

[35]  A. Bari, V. Ferraro, L. R. Wilson, D. Luttinger, L. Husain, Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmos. Environ. 2003, 37, 2825.
Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY.CrossRef | 1:CAS:528:DC%2BD3sXktF2nurw%3D&md5=5f333ae6fd3e7b291e9816b6dd25eccbCAS | open url image1

[36]  J. D. Spengler, M. Brauer, J. M. Samet, W. E. Lambert, Nitrous acid in Albuquerque, New Mexico, homes. Environ. Sci. Technol. 1993, 27, 841.
Nitrous acid in Albuquerque, New Mexico, homes.CrossRef | 1:CAS:528:DyaK3sXitFyls70%3D&md5=5ed619cbc9b9fdf8de906eff2d2dfa07CAS | open url image1

[37]  B. Vogel, H. Vogel, J. Kleffmann, R. Kurtenbach, Measured and simulated vertical profiles of nitrous acid. Part II. Model simulations and indications for a photolytic source. Atmos. Environ. 2003, 37, 2957.
Measured and simulated vertical profiles of nitrous acid. Part II. Model simulations and indications for a photolytic source.CrossRef | 1:CAS:528:DC%2BD3sXktlOhtrs%3D&md5=79767b4e4c4df8c9dd254913e4796db8CAS | open url image1

[38]  C. H. Song, M. E. Park, E. J. Lee, J. H. Lee, B. K. Lee, D. S. Lee, J. Kim, J. S. Han, K. J. Moon, Y. Kondo, Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea. Atmos. Environ. 2009, 43, 2168.
Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea.CrossRef | 1:CAS:528:DC%2BD1MXjslWks70%3D&md5=dc956963471b06df390d4f460c029daaCAS | open url image1

[39]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. W. M. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Allaham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales, J. A. Pople, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).

[40]  C. Møller, M. S. Plesset, Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618.
Note on an approximation treatment for many-electron systems.CrossRef | open url image1

[41]  A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
Density-functional thermochemistry. III. The role of exact exchange.CrossRef | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=3791cfa878410070b665d12505501d8aCAS | open url image1

[42]  C. Lee, W. T. Yang, R. G. Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density.CrossRef | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=8f62a3c11477ca21b6f38cd568a4b208CAS | open url image1

[43]  Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215.
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals.CrossRef | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=8bf3e357eeabd63c020a554469734dd1CAS | open url image1

[44]  C. Gonzalez, H. B. Schlegel, Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523.
Reaction path following in mass-weighted internal coordinates.CrossRef | 1:CAS:528:DyaK3cXktl2rt78%3D&md5=89671568723ec6032de0aa793d5614dbCAS | open url image1

[45]  J. Čížek, On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys. 1969, 14, 35.
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules.CrossRef | open url image1

[46]  J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Electron correlation theories and their application to the study of simple reaction potential surfaces. Int. J. Quantum Chem. 1978, 14, 545.
Electron correlation theories and their application to the study of simple reaction potential surfaces.CrossRef | 1:CAS:528:DyaE1MXos1Gluw%3D%3D&md5=d918028b7843cfbe95bc2f0e1d1a760eCAS | open url image1

[47]  R. J. Bartlett, Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J. Phys. Chem. 1989, 93, 1697.
Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry.CrossRef | 1:CAS:528:DyaL1MXht1WmtbY%3D&md5=39957856fda1fd774743d106d061febfCAS | open url image1

[48]  D. Jayatilaka, T. J. Lee, Open-shell coupled-cluster theory. J. Chem. Phys. 1993, 98, 9734.
Open-shell coupled-cluster theory.CrossRef | 1:CAS:528:DyaK3sXkvVSnurc%3D&md5=2016da5738c0408c149e127c8b6b0a1fCAS | open url image1

[49]  T. J. Lee, M. Head-Gordon, A. P. Rendell, Investigation of a diagnostic for perturbation theory. Comparison to the T1 diagnostic of coupled-cluster theory. Chem. Phys. Lett. 1995, 243, 402.
Investigation of a diagnostic for perturbation theory. Comparison to the T1 diagnostic of coupled-cluster theory.CrossRef | 1:CAS:528:DyaK2MXotFCmt7c%3D&md5=9155e77cbe70eae15cf3d6dc6fdec954CAS | open url image1

[50]  J. C. Rienstra-Kiracofe, W. D. Allen, H. F. Schaefer, The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J. Phys. Chem. A 2000, 104, 9823.
The C2H5 + O2 reaction mechanism: high-level ab initio characterizations.CrossRef | 1:CAS:528:DC%2BD3cXnt1Sksbk%3D&md5=7a77e67d9433e0a119a3c2bfaf6e532bCAS | open url image1

[51]  W. G. Liu, W. A. Goddard, First-principles study of the role of interconversion between NO2, N2O4, cis-ONO–NO2, and trans-ONO–NO2 in chemical processes. J. Am. Chem. Soc. 2012, 134, 12 970.
First-principles study of the role of interconversion between NO2, N2O4, cis-ONO–NO2, and trans-ONO–NO2 in chemical processes.CrossRef | 1:CAS:528:DC%2BC38XhtVWht7bN&md5=b573fcd17b86670c0a495487a7be96a4CAS | open url image1

[52]  A. S. Pimentel, F. C. A. Lima, A. B. F. da Silva, The isomerization of dinitrogen tetroxide: O2N–NO2 → ONO–NO2. J. Phys. Chem. A 2007, 111, 2913.
The isomerization of dinitrogen tetroxide: O2N–NO2 → ONO–NO2.CrossRef | 1:CAS:528:DC%2BD2sXjsVGrtrs%3D&md5=22c1a58f154938aab15a312b328f41ffCAS | 17388577PubMed | open url image1

[53]  F. R. Ornellas, S. M. Resende, F. B. C. Machado, O. Roberto-Neto, A high-level theoretical investigation of the N2O4 → 2NO2 dissociation reaction: is there a transition state? J. Chem. Phys. 2003, 118, 4060.
A high-level theoretical investigation of the N2O4 → 2NO2 dissociation reaction: is there a transition state?CrossRef | 1:CAS:528:DC%2BD3sXht1Clur0%3D&md5=75c578addb30854c8cb8458f7919f4a7CAS | open url image1

[54]  Y. Song, R. J. Hemley, H. Mao, Z. X. Liu, D. R. Herschbach, New phases of N2O4 at high pressures and high temperatures. Chem. Phys. Lett. 2003, 382, 686.
New phases of N2O4 at high pressures and high temperatures.CrossRef | 1:CAS:528:DC%2BD3sXptlOmu7s%3D&md5=1e797e49196b16a51c11db6f9f0273ceCAS | open url image1

[55]  L. E. S. de Souza, U. K. Deiters, Modeling of the N2O4–NO2 reacting system. Phys. Chem. Chem. Phys. 2000, 2, 5606.
Modeling of the N2O4–NO2 reacting system.CrossRef | 1:CAS:528:DC%2BD3cXoslSntL0%3D&md5=3b86faf281ccc6948aa9b715b5989213CAS | open url image1

[56]  Q. Shen, K. Hedberg, Investigation of the equilibrium N2O4 ↔ 2NO2 by electron diffraction: molecular structures and effective temperature and pressure of the expanding gas with implications for studies of other dimer–monomer equilibria. J. Phys. Chem. A 1998, 102, 6470.
Investigation of the equilibrium N2O4 ↔ 2NO2 by electron diffraction: molecular structures and effective temperature and pressure of the expanding gas with implications for studies of other dimer–monomer equilibria.CrossRef | 1:CAS:528:DyaK1cXkvFChtLs%3D&md5=d18bf1fc7dc2136320892ed21af93ff8CAS | open url image1

[57]  M. L. McKee, Ab initio study of the N2O4 potential energy surface. J. Am. Chem. Soc. 1995, 117, 1629.
Ab initio study of the N2O4 potential energy surface.CrossRef | 1:CAS:528:DyaK2MXjtlKltL0%3D&md5=237266b01421bcdf88e435692dbbbbd6CAS | open url image1

[58]  K. Y. Lai, R. S. Zhu, M. C. Lin, Why mixtures of hydrazine and dinitrogen tetroxide are hypergolic? Chem. Phys. Lett. 2012, 537, 33.
Why mixtures of hydrazine and dinitrogen tetroxide are hypergolic?CrossRef | 1:CAS:528:DC%2BC38Xnt1ahsrg%3D&md5=6b0320f3e91ecbb78f11fb5ccc49be66CAS | open url image1

[59]  B. Njegic, J. D. Raff, B. J. Finlayson-Pitts, M. S. Gordon, R. B. Gerber, Catalytic role for water in the atmospheric production of ClNO. J. Phys. Chem. A 2010, 114, 4609.
Catalytic role for water in the atmospheric production of ClNO.CrossRef | 1:CAS:528:DC%2BC3cXjt1CqtLc%3D&md5=8f84500dee639233b26100cd13c722ddCAS | 20232807PubMed | open url image1

[60]  J. D. Raff, B. Njegic, W. L. Chang, M. S. Gordon, D. Dabdub, R. B. Gerber, B. J. Finlayson-Pitts, Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride. Proc. Natl. Acad. Sci. USA 2009, 106, 13 647.
Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride.CrossRef | open url image1

[61]  S. Koda, K. Yoshikawa, J. Okada, K. Akita, Reaction kinetics of nitrogen dioxide with methanol in the gas phase. Environ. Sci. Technol. 1985, 19, 262.
Reaction kinetics of nitrogen dioxide with methanol in the gas phase.CrossRef | 1:CAS:528:DyaL2MXotlKjtw%3D%3D&md5=bb75b68a2019f818ff1bf6a9bb0798dcCAS | 22296015PubMed | open url image1

[62]  R. S. Zhu, K. Y. Lai, M. C. Lin, Ab initio chemical kinetics for the hydrolysis of N2O4 isomers in the gas phase. J. Phys. Chem. A 2012, 116, 4466.
Ab initio chemical kinetics for the hydrolysis of N2O4 isomers in the gas phase.CrossRef | 1:CAS:528:DC%2BC38Xls1yqt7k%3D&md5=dde6b51d314112c17627443b2c73bb98CAS | 22506560PubMed | open url image1

[63]  M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Laferly, A. G. Marki, Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods. J. Phys. Chem. Ref. Data 1979, 8, 619.
Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods.CrossRef | 1:CAS:528:DyaL3cXktVOksQ%3D%3D&md5=c46d645cfcfc5037f7bce56de59fd16eCAS | open url image1

[65]  D. de Jesus Medeiros, A. S. Pimentel, New insights in the atmospheric HONO formation: new pathways for N2O4 isomerization and NO2 dimerization in the presence of water. J. Phys. Chem. A 2011, 115, 6357.
New insights in the atmospheric HONO formation: new pathways for N2O4 isomerization and NO2 dimerization in the presence of water.CrossRef | 21585211PubMed | open url image1

[66]  M. E. Varner, B. J. Finlayson-Pitts, R. B. Gerber, Reaction of a charge-separated ONONO2 species with water in the formation of HONO: an MP2 molecular dynamics study. Phys. Chem. Chem. Phys. 2014, 16, 4483.
Reaction of a charge-separated ONONO2 species with water in the formation of HONO: an MP2 molecular dynamics study.CrossRef | 1:CAS:528:DC%2BC2cXisVWqtr4%3D&md5=8e602f2a2777944e830e9fcbf9306cf5CAS | 24473238PubMed | open url image1

[67]  J. Liu, S. Fang, W. Liu, M. Wang, F. Tao, J. Liu, Mechanism of the gaseous hydrolysis reaction of SO2: effects of NH3 versus H2O. J. Phys. Chem. A 2015, 119, 102.
Mechanism of the gaseous hydrolysis reaction of SO2: effects of NH3 versus H2O.CrossRef | 1:CAS:528:DC%2BC2cXitFeitb3N&md5=1ebbc2d95b62d6266121ecec611383e5CAS | 25495573PubMed | open url image1

[68]  S. Bourahla, A. Ali Benamara, S. Kouadri Moustefai, Infrared spectra of inorganic aerosols: ab initio study of (NH4)2SO4, NH4NO3, and NaNO3. Can. J. Phys. 2014, 92, 216.
Infrared spectra of inorganic aerosols: ab initio study of (NH4)2SO4, NH4NO3, and NaNO3.CrossRef | 1:CAS:528:DC%2BC3sXhvVGmsb%2FJ&md5=ae43af50648c14fc3550561698dc078fCAS | open url image1

[69]  C. S. Choi, J. E. Mapes, E. Prince, The structure of ammonium nitrate(IV). Acta Crystallogr. 1972, 28, 1357.
The structure of ammonium nitrate(IV).CrossRef | 1:CAS:528:DyaE38XhsF2mu78%3D&md5=300d544a1fb6bd545717c0b29f1dfcbbCAS | open url image1

[70]  L. W. Gong, R. Lewicki, R. J. Griffin, F. K. Tittel, C. R. Lonsdale, R. G. Stevens, J. R. Pierce, Q. G. J. Malloy, S. A. Travis, L. M. Bobmanuel, B. L. Lefer, J. H. Flynn, Role of atmospheric ammonia in particulate matter formation in Houston during summertime. Atmos. Environ. 2013, 77, 893.
Role of atmospheric ammonia in particulate matter formation in Houston during summertime.CrossRef | 1:CAS:528:DC%2BC3sXht1alsLjL&md5=49e21bd6f59281b2ff5bc28d7e3b0a7dCAS | open url image1

[71]  T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580.
Multiwfn: a multifunctional wavefunction analyzer.CrossRef | 22162017PubMed | open url image1

[72]  W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33.
VMD: visual molecular dynamics.CrossRef | 1:CAS:528:DyaK28Xis12nsrg%3D&md5=9474391758900edeac0225e6c29d5abbCAS | 8744570PubMed | open url image1



Supplementary MaterialSupplementary Material (1.1 MB) Export Citation