Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Metal speciation from stream to open ocean: modelling v. measurement

Edward Tipping A C , Stephen Lofts A and Anthony Stockdale B

A Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, UK.

B School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

C Corresponding author. Email: et@ceh.ac.uk

Environmental Chemistry 13(3) 464-477 http://dx.doi.org/10.1071/EN15111
Submitted: 30 May 2015  Accepted: 16 July 2015   Published: 6 October 2015

Environmental context. The chemical speciation of metals strongly influences their transport, fate and bioavailability in natural waters. Analytical measurement and modelling both play important roles in understanding speciation, while modelling is also needed for prediction. Here, we analyse a large set of data for fresh waters, estuarine and coastal waters, and open ocean water, to examine how well measurements and modelling predictions agree.

Abstract. We compiled a data set of ~2000 published metal speciation measurements made on samples of fresh waters, estuarine and coastal waters, and open ocean waters. For each sample, we applied the chemical speciation model WHAM7 to calculate the equilibrium free metal ion concentrations, [M] (mol L–1), amounts of metal bound by dissolved organic matter (DOM), ν (mol g–1), and their ratio ν/[M] (L g–1), which is a kind of ‘local’ partition coefficient. Comparison of the measured and predicted speciation variables for the whole data set showed that agreements are best for fresh waters, followed by estuarine and coastal waters, then open-ocean waters. Predicted values of ν/[M], averaged over all results for each metal, closely follow the trend in average measured values, confirming that metal reactivity, and consequent complexation by DOM, in natural waters accord with the expectations of the speciation model. Comparison of model predictions with measurements by different analytical techniques suggests that competitive ligand–stripping voltammetry methods overestimate metal complexation by DOM, and therefore underestimate [M]. When measurements by other methods are compared with predictions, for all metals, reasonable agreement with little bias is obtained at values of ν > 10–6 mol g–1 DOM, but at lower values of ν, the model predictions of [M] are mostly higher than the measured values, and the predictions of ν and ν/[M] are mostly lower. Research is needed to establish whether this reflects analytical error or the failure of the model to represent natural high-affinity ligands.


References

[1]  T. M. Florence, G. E. Batley, P. Benes, Chemical speciation in natural waters. Crit. Rev. Anal. Chem. 1980, 9, 219.
Chemical speciation in natural waters.CrossRef | 1:CAS:528:DyaL3MXht1Kru7o%3D&md5=5452e43dc17f2c18ce4fc25b92aa3503CAS | open url image1

[2]  P. G. C. Campbell, Interactions between trace elements and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier and D.R. Turner) 1995, pp. 45–102 (Wiley: Chichester, UK).

[3]  J. E. Groenenberg, S. Lofts, The use of assemblage models to describe trace element partitioning, speciation, and fate: a review. Environ. Toxicol. Chem. 2014, 33, 2181.
The use of assemblage models to describe trace element partitioning, speciation, and fate: a review.CrossRef | 1:CAS:528:DC%2BC2cXhsFKntrjP&md5=bb6ec4022067a322f9aeaa68b4a7ab10CAS | 24862928PubMed | open url image1

[4]  P. G. C. Campbell, P. M. Stokes, Acidification and toxicity of metals to aquatic biota. Can. J. Fish. Aquat. Sci. 1985, 42, 2034.
Acidification and toxicity of metals to aquatic biota.CrossRef | 1:CAS:528:DyaL28Xotlelsw%3D%3D&md5=1f26c9c0ccd7d9e9a5f2431062a299cfCAS | open url image1

[5]  M. Gledhill, E. P. Achterberg, K. Li, K. N. Mohamed, M. J. A. Rijkenberg, Influence of ocean acidification on the complexation of iron and copper by organic ligands in estuarine waters. Mar. Chem. 2015,
Influence of ocean acidification on the complexation of iron and copper by organic ligands in estuarine waters.CrossRef | open url image1

[6]  F. J. Millero, R. Woosley, B. Ditrolio, J. Waters, Effect of ocean acidification on the speciation of metals in seawater. Oceanogr. 2009, 22, 72.
Effect of ocean acidification on the speciation of metals in seawater.CrossRef | open url image1

[7]  M. Pesavento, G. Alberti, R. Biesuz, Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal. Chim. Acta 2009, 631, 129.
Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.CrossRef | 1:CAS:528:DC%2BD1cXhsFWis73L&md5=558d25cba093deffd9e9232673c8391cCAS | 19084618PubMed | open url image1

[8]  J. Buffle, G. Horvai, In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation 2000 (Wiley: New York).

[9]  E. Tipping, Cation Binding by Humic Substances 2002 (Cambridge University Press: Cambridge, UK).

[10]  E. Tipping, WHAM – a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site electrostatic model of ion-binding by humic substances. Comput. Geosci. 1994, 20, 973.
WHAM – a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site electrostatic model of ion-binding by humic substances.CrossRef | 1:CAS:528:DyaK2MXhtlyhtrY%3D&md5=7ded37c9af50999f549148d9595f8de2CAS | open url image1

[11]  C. J. Milne, D. G. Kinniburgh, W. H. Van Riemsdijk, E. Tipping, Generic NICA–Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA–Donnan model parameters for metal-ion binding by humic substances.CrossRef | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=2eda2310a7221ae42b73f399e3b9e8b5CAS | 12666927PubMed | open url image1

[12]  J. W. Guthrie, N. M. Hassan, M. S. A. Salam, I. I. Fasfous, C. A. Murimboh, J. Murimboh, C. L. Chakrabarti, D. C. Grégoire, Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal ion and labile complexes and a computer speciation model, WHAM V and VI. Anal. Chim. Acta 2005, 528, 205.
Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal ion and labile complexes and a computer speciation model, WHAM V and VI.CrossRef | 1:CAS:528:DC%2BD2MXkslyhsg%3D%3D&md5=4f6eabd66f3094be1b10367828dc9a03CAS | open url image1

[13]  E. R. Unsworth, K. W. Warnken, H. Zhang, W. Davison, F. Black, J. Buffle, J. Cao, R. Cleven, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, H. P. van Leeuwen, M. Martin, S. Noël, Y. Nur, N. Odzak, J. Puy, W. van Riemsdijk, L. Sigg, E. J. M. Temminghoff, M.-L. Tercier-Waeber, S. Topperwien, R. M. Town, L. Weng, H. B. Xue, Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ. Sci. Technol. 2006, 40, 1942.
Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.CrossRef | 1:CAS:528:DC%2BD28XhtlSku7o%3D&md5=317db11fd744633a6ba8cae2f0cd8eaeCAS | 16570619PubMed | open url image1

[14]  S. Lofts, E. Tipping, Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. Environ. Chem. 2011, 8, 501.
Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs.CrossRef | 1:CAS:528:DC%2BC3MXhtlykt73J&md5=6d5203022a7c53649a5ef04da5785dcbCAS | open url image1

[15]  A. Stockdale, E. Tipping, S. Lofts, Dissolved trace metal speciation in estuarine and coastal waters: comparison of WHAM/Model VII predictions with analytical results. Environ. Toxicol. Chem. 2015, 34, 53.
Dissolved trace metal speciation in estuarine and coastal waters: comparison of WHAM/Model VII predictions with analytical results.CrossRef | 1:CAS:528:DC%2BC2cXitFaqtLfF&md5=57eef4367bc789fdb5ce2e81a0779c9fCAS | 25387688PubMed | open url image1

[16]  A. Stockdale, E. Tipping, J. Hamilton-Taylor, S. Lofts, Trace metals in the open oceans: speciation modelling based on humic-type ligands. Environ. Chem. 2011, 8, 304.
Trace metals in the open oceans: speciation modelling based on humic-type ligands.CrossRef | 1:CAS:528:DC%2BC3MXptVWrsbc%3D&md5=79d2c4570666578baa92db699bb728f0CAS | open url image1

[17]  E. Tipping, V. I. Humic Ion Binding Model, An improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
An improved description of the interactions of protons and metal ions with humic substances.CrossRef | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=cf0c6c40511e5000b173c62e5266b947CAS | open url image1

[18]  E. Tipping, S. Lofts, J. E. Sonke, Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 2011, 8, 225.
Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances.CrossRef | 1:CAS:528:DC%2BC3MXptVWrsL0%3D&md5=bda1097b974d554ee7c343f673c6e24bCAS | open url image1

[19]  C. T. Driscoll, A procedure for the fractionation of aqueous aluminium in dilute acid waters. Int. J. Environ. Anal. Chem. 1984, 16, 267.
A procedure for the fractionation of aqueous aluminium in dilute acid waters.CrossRef | 1:CAS:528:DyaL2cXhvFOms78%3D&md5=425c8c68872e4b822a813f80c2a2ac1fCAS | open url image1

[20]  C. A. Backes, E. Tipping, An evaluation of the use of cation-exchange resin for the determination of organically complexed Al in natural acid waters. Int. J. Environ. Anal. Chem. 1987, 30, 135.
An evaluation of the use of cation-exchange resin for the determination of organically complexed Al in natural acid waters.CrossRef | 1:CAS:528:DyaL2sXls1WhsLo%3D&md5=7278d545f50bf3a0af175d3b0e1cd380CAS | open url image1

[21]  G. Scarano, E. Bramanti, A. Zirino, Determination of copper complexation in seawater by a ligand competition technique with voltammetric measurement of the labile metal fraction. Anal. Chim. Acta 1992, 264, 153.
Determination of copper complexation in seawater by a ligand competition technique with voltammetric measurement of the labile metal fraction.CrossRef | 1:CAS:528:DyaK38XltFyjtLw%3D&md5=2f117431becd1f65730bbc31b7c6a402CAS | open url image1

[22]  F. L. L. Muller, Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters. Mar. Chem. 1996, 52, 245.
Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters.CrossRef | 1:CAS:528:DyaK28XjsFOntb8%3D&md5=f7484f59854ce2d0b41003cc5cad5b78CAS | open url image1

[23]  D. Tang, K. W. Warnken, P. H. Santschi, Organic complexation of copper in surface waters of Galveston Bay. Limnol. Oceanogr. 2001, 46, 321.
Organic complexation of copper in surface waters of Galveston Bay.CrossRef | 1:CAS:528:DC%2BD3MXjtVWgsLY%3D&md5=8e46e927edc5ba79861b98b3fa7a1eabCAS | open url image1

[24]  C. M. G. van den Berg, Evidence for organic complexation of iron in seawater. Mar. Chem. 1995, 50, 139.
Evidence for organic complexation of iron in seawater.CrossRef | 1:CAS:528:DyaK2MXotVaqu78%3D&md5=4101779cf873e2d3a2cbed4c5060f882CAS | open url image1

[25]  E. J. J. Kalis, L. Weng, F. Dousma, E. J. M. Temminghoff, W. H. Van Riemsdijk, Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique. Environ. Sci. Technol. 2006, 40, 955.
Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique.CrossRef | 1:CAS:528:DC%2BD2MXhtlars7rK&md5=05ff63516e243bb72f201b3e7303e1d9CAS | open url image1

[26]  K. H. Coale, K. W. Bruland, Copper complexation in the north-east Pacific. Limnol. Oceanogr. 1988, 33, 1084.
Copper complexation in the north-east Pacific.CrossRef | 1:CAS:528:DyaL1MXksVCluw%3D%3D&md5=7f7e91fb3bde3102334e068a20b07c56CAS | open url image1

[27]  C. Fortin, P. G. C. Campbell, An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media. Int. J. Environ. Anal. Chem. 1998, 72, 173.
An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media.CrossRef | 1:CAS:528:DC%2BD3cXis12gtLY%3D&md5=558cde496f597fdaaa6a6089bda8f0b1CAS | open url image1

[28]  C. Fortin, Y. Couillard, B. Vigneault, P. G. C. Campbell, Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange. Aquat. Geochem. 2010, 16, 151.
Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange.CrossRef | 1:CAS:528:DC%2BD1MXhsFyjt7rN&md5=caf11fd6e783b47736715c86f6abf3e0CAS | open url image1

[29]  A. Zirino, D. A. Van der Weele, S. L. Belli, R. DeMarco, D. J. Mackey, Direct measurement of CuIIaq in seawater at pH 8 with the jalpaite ion-selective electrode. Mar. Chem. 1998, 61, 173.
Direct measurement of CuIIaq in seawater at pH 8 with the jalpaite ion-selective electrode.CrossRef | 1:CAS:528:DyaK1cXktVymsbY%3D&md5=f4943244e1870a69b224fdad712476e4CAS | open url image1

[30]  S. Bayen, K. J. Wilkinson, J. Buffle, The permeation liquid membrane as a sensor for free nickel in aqueous samples. Analyst 2007, 132, 262.
The permeation liquid membrane as a sensor for free nickel in aqueous samples.CrossRef | 1:CAS:528:DC%2BD2sXitVOksrk%3D&md5=d3264d33ab396acc4b2dbb2ff8640f3fCAS | 17325760PubMed | open url image1

[31]  N. Parthasarathy, M. Pelletier, J. Buffle, Hollow fiber-based supported liquid membrane: a novel analytical system for trace metal analysis. Anal. Chim. Acta 1997, 350, 183.
Hollow fiber-based supported liquid membrane: a novel analytical system for trace metal analysis.CrossRef | 1:CAS:528:DyaK2sXlsVWgt70%3D&md5=169593e37fcf08a45d0b1800c9bb30c1CAS | open url image1

[32]  W. Stumm, J. J. Morgan, Aquatic Chemistry, 3rd edn 1996 (Wiley: New York).

[33]  F. J. Millero, D. R. Schreiber, Use of the ion-pairing model to estimate activity coefficients of the ionic components of natural waters. Am. J. Sci. 1982, 282, 1508.
Use of the ion-pairing model to estimate activity coefficients of the ionic components of natural waters.CrossRef | 1:CAS:528:DyaL3sXksVejsL4%3D&md5=e7b3be7c14a9ef6699082c3a085ffd5dCAS | open url image1

[34]  R. H. Byrne, L. R. Kump, K. J. Cantrell, The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem. 1988, 25, 163.
The influence of temperature and pH on trace metal speciation in seawater.CrossRef | 1:CAS:528:DyaL1MXhtlWqtg%3D%3D&md5=60df343f250dfb55f0754f635a47f964CAS | open url image1

[35]  A. De Robertis, C. De Stefano, S. Sammartano, Equilibrium studies in natural fluids: a chemical speciation model for the major constituents of sea water. Chem. Spec. Bioavail. 1994, 6, 65.
| 1:CAS:528:DyaK2MXitVGjsr0%3D&md5=8d1272eb824ba8becb64e386d1ac5a78CAS | open url image1

[36]  S. E. Bryan, E. Tipping, J. Hamilton-Taylor, Comparison of measured and modelled copper binding by natural organic matter in freshwaters. Comp. Biochem. Physiol. C – Toxicol. Pharmacol. 2002, 133, 37.
Comparison of measured and modelled copper binding by natural organic matter in freshwaters.CrossRef | 1:STN:280:DC%2BD38nmsFGhtA%3D%3D&md5=2dd391377220c31e2717c75fd746375cCAS | 12356515PubMed | open url image1

[37]  E. Tipping, C. Woof, M. A. Hurley, Humic substances in acid surface waters – modeling aluminium binding, contribution to ionic charge-balance, and control of pH. Water Res. 1991, 25, 425.
Humic substances in acid surface waters – modeling aluminium binding, contribution to ionic charge-balance, and control of pH.CrossRef | 1:CAS:528:DyaK3MXitlClsr4%3D&md5=a65a05259716c28016b79eba2658bd29CAS | open url image1

[38]  S. Lofts, E. Tipping, J. Hamilton-Taylor, The chemical speciation of FeIII in freshwaters. Aquat. Geochem. 2008, 14, 337.
The chemical speciation of FeIII in freshwaters.CrossRef | 1:CAS:528:DC%2BD1cXht12gtLzN&md5=0c5f0efcdcd768cd55fdcd8bfc9f6428CAS | open url image1

[39]  E. Tipping, C. Rey-Castro, S. E. Bryan, J. Hamilton-Taylor, AlIII and FeIII binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim. Cosmochim. Acta 2002, 66, 3211.
AlIII and FeIII binding by humic substances in freshwaters, and implications for trace metal speciation.CrossRef | 1:CAS:528:DC%2BD38XmslKktbk%3D&md5=c0d4c88b8a3edd2164fe3daa206e62b7CAS | open url image1

[40]  M. Sillanpää, Environmental fate of EDTA and DTPA, in Reviews of Environmental Contamination and Toxicology (Ed. G. W. Ware) 1997, Vol. 152, pp. 85–111 (Springer: New York).

[41]  S. Baken, F. Degryse, L. Verheyen, R. Merckx, E. Smolders, Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 2011, 45, 2584.
Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands.CrossRef | 1:CAS:528:DC%2BC3MXjtFKqtbo%3D&md5=1a4ba87011f61693f0b98519fda2c0b6CAS | 21405071PubMed | open url image1

[42]  I. A. M. Ahmed, J. Hamilton-Taylor, M. Bieroza, H. Zhang, W. Davison, Improving and testing geochemical speciation predictions of metal ions in natural waters. Water Res. 2014, 67, 276.
Improving and testing geochemical speciation predictions of metal ions in natural waters.CrossRef | 1:CAS:528:DC%2BC2cXhs1WqsLfO&md5=c9ad572487aedf514c6a3cd08f42a5d4CAS | open url image1

[43]  M. L. Wells, Marine colloids and trace metals, in Biogeochemistry of Marine Dissolved Organic Matter (Eds D. A. Hansell, C. A. Carlson) 2002, pp. 367–404 (Academic Press: London).

[44]  F. M. M. Morel, N. M. Price, The biogeochemical cycles of trace metals in the oceans. Science 2003, 300, 944.
The biogeochemical cycles of trace metals in the oceans.CrossRef | 1:CAS:528:DC%2BD3sXjsVyjsLk%3D&md5=c9e39d3fdfa28c650219e4b0f457a654CAS | open url image1

[45]  E. Tipping, Modelling the interactions of HgII and methylmercury with humic substances using WHAM/Model VI. Appl. Geochem. 2007, 22, 1624.
Modelling the interactions of HgII and methylmercury with humic substances using WHAM/Model VI.CrossRef | 1:CAS:528:DC%2BD2sXpt1yls7w%3D&md5=404de1eb1931c9b177c74f82425e165bCAS | open url image1

[46]  R. S. Eriksen, D. J. Mackey, R. van Dam, B. Nowak, Copper speciation and toxicity in Macquarie Harbour, Tasmania: an investigation using a copper ion-selective electrode. Mar. Chem. 2001, 74, 99.
Copper speciation and toxicity in Macquarie Harbour, Tasmania: an investigation using a copper ion-selective electrode.CrossRef | 1:CAS:528:DC%2BD3MXhvFWls7k%3D&md5=a5d05cc35c9b6981ee203af6517c8b82CAS | open url image1

[47]  H. P. van Leeuwen, R. M. Town, Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange adsorptive stripping voltammetry (CLEAdSV). Environ. Sci. Technol. 2005, 39, 7217.
Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange adsorptive stripping voltammetry (CLEAdSV).CrossRef | 1:CAS:528:DC%2BD2MXns1aisLk%3D&md5=32716e96ac260ec7bd97e55bc9ce7c1cCAS | 16201651PubMed | open url image1

[48]  I. A. M. Ahmed, J. Hamilton–Taylor, S. Lofts, J. C. L. Meeussen, C. Lin, H. Zhang, W. Davison, Testing copper-speciation predictions in freshwaters over a wide range of metal–organic matter ratios. Environ. Sci. Technol. 2013, 47, 1487.
Testing copper-speciation predictions in freshwaters over a wide range of metal–organic matter ratios.CrossRef | 1:CAS:528:DC%2BC3sXhslGhsw%3D%3D&md5=581330935373ead076e7eb0b0097e6b5CAS | open url image1

[49]  A. Stockdale, E. Tipping, S. Lofts, S. J. Ormerod, W. H. Clements, R. Blust, Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquat. Toxicol. 2010, 100, 112.
Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability.CrossRef | 1:CAS:528:DC%2BC3cXhtFGjurbM&md5=6a9579e1eca139935498e8aeee3d20feCAS | 20701986PubMed | open url image1

[50]  E. Tipping, C. D. Vincent, A. J. Lawlor, S. Lofts, Metal accumulation by stream bryophytes, related to chemical speciation. Environ. Pollut. 2008, 156, 936.
Metal accumulation by stream bryophytes, related to chemical speciation.CrossRef | 1:CAS:528:DC%2BD1cXhsVSgtb3J&md5=50f02427f9ba4cb31d1e8d280e4874f1CAS | 18541353PubMed | open url image1

[51]  E. Tipping, S. Lofts, Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model. Aquat. Toxicol. 2013, 142–143, 114.
Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model.CrossRef | 23994673PubMed | open url image1

[52]  E. Tipping, S. Lofts, Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environ. Toxicol. Chem. 2015, 34, 788.
Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).CrossRef | 1:CAS:528:DC%2BC2MXltFSksLs%3D&md5=a2856b734cc1fe90ff8cc8c60e923612CAS | 25318827PubMed | open url image1

[53]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, M. Martin, S. Noel, Y. Nur, N. Odzak, J. Puy, W. Van Riemsdijk, E. Temminghoff, M. L. Tercier-Weber, S. Toepperwien, R. M. Town, E. Unsworth, K. W. Warnken, L. P. Weng, H. B. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.CrossRef | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=d5016d472512f001bdd15dec070ccd7aCAS | 16570618PubMed | open url image1

[54]  J. Feldmann, P. Salaün, E. Lombi, Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration. Environ. Chem. 2009, 6, 275.
Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration.CrossRef | 1:CAS:528:DC%2BD1MXhsVSlurfK&md5=3fede31ae41e217f2c5bc5bb8cb355ddCAS | open url image1

[55]  A. M. Mota, J. P. Pinheiro, M. L. S. Goncalves, Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects. J. Phys. Chem. A 2012, 116, 6433.
Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects.CrossRef | 1:CAS:528:DC%2BC38Xmt1ektb0%3D&md5=38f02b3dfdbc2401db343e8312b8bdf4CAS | 22540875PubMed | open url image1


Full Text PDF (936 KB) Export Citation