Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Influence of dissolved organic matter (DOM) source on copper speciation and toxicity to Brachionus plicatilis

Tara N. Tait A , Christopher A. Cooper A , James C. McGeer B , Chris M. Wood C and D. Scott Smith A D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.

B Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.

C Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.

D Corresponding author. Email: ssmith@wlu.ca

Environmental Chemistry 13(3) 496-506 https://doi.org/10.1071/EN15123
Submitted: 15 June 2015  Accepted: 7 October 2015   Published: 5 February 2016

Environmental context. Organic matter dissolved in water can mitigate toxic effects of copper, which should be taken into account when estimating risks of copper pollution. The composition of this organic matter, however, can vary widely, and these variations might also need to be taken into account. This work addresses the question of organic matter quality and demonstrates that only the amount and not the source influences copper toxicity – good news for risk analysis because it simplifies predictions of the effects of copper in specific receiving waters.

Abstract. The toxicity of copper in marine systems is dependent on its speciation and bioavailability. Dissolved organic matter (DOM) can complex copper, resulting in decreased bioavailability and hence decreased toxicity. The purpose of this study was to measure acute copper LC50 values (concentration lethal to 50 % of the organisms) in natural marine waters in a sensitive organism, and identify the relationships between DOM quality and copper toxicity and speciation. Static acute copper toxicity tests (48-h LC50) were performed using the euryhaline rotifer Brachionus plicatilis. Ion-selective electrode measurements of free copper were performed at the LC50 concentrations to determine the influence of DOM source on copper speciation. LC50 values ranged from 333 to 980 nM (21.1 to 62.3 µg L–1) with DOC concentrations ranging from 0.55 to 7.57 mg C L–1. DOC was found to be protective (R2 = 0.72, P = 0.016); however, the degree of protection decreased as DOC increased. This suggests salt-induced colloid formation could be occurring, resulting in a decrease of binding sites available to complex free copper. Free copper remained fairly constant between each sample site, with an average pCu of 10.14. Overall, this study is consistent with other studies that suggest free copper is the best species for predicting toxicity. Additionally, no significant correlation between DOM source and copper toxicity was observed as compared with total DOC concentration and copper toxicity, suggesting that DOM quality does not need to be taken into account for copper toxicity modelling in salt water.


References

[1]  The Biological Importance of Copper: a Literature Review. ICA Project Number 223 1995 (International Copper Association: New York).

[2]  M. Grosell, C. M. Wood, Copper uptake across rainbow trout gills: mechanisms of apical entry. J. Exp. Biol. 2002, 205, 1179.
| 1:CAS:528:DC%2BD38XktF2qsbc%3D&md5=51b4acec14e441d1657358cab1239252CAS | 11919277PubMed | open url image1

[3]  A. de Polo, M. Scrimshaw, Challenges for the development of a biotic ligand model predicting copper toxicity in estuaries and seas. Environ. Toxicol. Chem. 2012, 31, 230.
Challenges for the development of a biotic ligand model predicting copper toxicity in estuaries and seas.CrossRef | 1:CAS:528:DC%2BC38XhtlWku7s%3D&md5=9e73c54f86fe24eecca0ae1993171cb2CAS | 22105377PubMed | open url image1

[4]  Population trends along the coastal United States: 1980–2008. Technical report 2004 (National Oceanic and Atmospheric Administration, National Ocean Service: Santa Barbara, CA, USA).

[5]  Water and Canada Preserving a Legacy for People in the Environment 2003 (Government of Canada: Ottawa, ON, Canada).

[6]  D. J. Mackey, Metal–organic complexes in seawater – An investigation of naturally occurring complexes of Cu, Zn, Fe, Mg, Ni, Cr, Mn and Cd using high-performance liquid chromatography with atomic fluorescence detection. Mar. Chem. 1983, 13, 169.
Metal–organic complexes in seawater – An investigation of naturally occurring complexes of Cu, Zn, Fe, Mg, Ni, Cr, Mn and Cd using high-performance liquid chromatography with atomic fluorescence detection.CrossRef | 1:CAS:528:DyaL3sXlt1Oqtbg%3D&md5=2bf5b9c830b5b9e7fdfbaf7aa86b0a44CAS | open url image1

[7]  J. R. Donat, K. A. Lao, K. W. Bruland, Speciation of dissolved copper and nickel in south San Francisco Bay: a multi-method approach. Anal. Chim. Acta 1994, 284, 547.
Speciation of dissolved copper and nickel in south San Francisco Bay: a multi-method approach.CrossRef | open url image1

[8]  National Recommended Water Quality Criteria 2007 (US EPA). Available at http://water.epa.gov/scitech/swguidance/standards/current/index.cfm [Verified 13 November 2015].

[9]  Canadian Water Quality Guidelines. Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Resource and Environment Ministers 1987 (Government of Canada: Ottawa, ON, Canada).

[10]  Water Quality: Water Quality Criteria for Copper, Overview Report 1987 (British Columbia Ministry of the Environment). Available at http://www.env.gov.bc.ca/wat/wq/BCguidelines/copper/copper.html [Verified 13 November 2015].

[11]  D. M. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. R. Paquin, R. C. Santore, Biotic ligand model of the acute toxicity of metals 1. Technical basis. Environ. Toxicol. Chem. 2001, 20, 2383.
Biotic ligand model of the acute toxicity of metals 1. Technical basis.CrossRef | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=6514eabd3c03eaa7197aa29fe555ae53CAS | 11596774PubMed | open url image1

[12]  R. C. Santore, D. M. Di Toro, P. R. Paquin, H. E. Allen, J. S. Meyer, Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia.. Environ. Toxicol. Chem. 2001, 20, 2397.
Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia..CrossRef | 1:CAS:528:DC%2BD38XitlWmsw%3D%3D&md5=c480e1e407948299b12f7455b3dcd0adCAS | 11596775PubMed | open url image1

[13]  P. R. Paquin, J. W. Gorsuch, S. Apte, G. E. Batley, K. C. Bowles, P. G. C. Campbell, C. G. Delos, D. M. Di Toro, R. L. Dwyer, F. Galvez, R. W. Gensemer, G. G. Goss, C. Hogstrand, C. R. Janseen, J. C. McGeer, R. B. Naddy, R. C. Playle, R. C. Santore, U. Schneider, W. A. Stubblefield, C. M. Wood, J. B. Wu, The biotic ligand model: a historical overview. Comp. Biochem. Physiol. C 2002, 133, 3. open url image1

[14]  W. R. Arnold, Effects of dissolved organic carbon on copper toxicity: implications for saltwater copper criteria. Integr. Environ. Assess. Manag. 2005, 1, 34.
Effects of dissolved organic carbon on copper toxicity: implications for saltwater copper criteria.CrossRef | 1:CAS:528:DC%2BD2MXivVCmt70%3D&md5=33df4720637542c99d11d67be827a6fcCAS | 16637145PubMed | open url image1

[15]  D. B. Chadwick, I. Rivera-Duarte, G. Rosen, P. F. Wang, R. C. Santore, A. C. Ryan, P. R. Paquin, S. D. Hafner, W. Choi, Demonstration of an integrated model for predicting copper fate and effects in DoD harbors. SPAWAR Technical Report 1972. Project ER-0523 2008 (SSC Pacific: San Diego, CA, USA).

[16]  R. S. Eriksen, B. Nowak, R. A. van Dam, Copper speciation and toxicity in a contaminated estuary. Supervising scientist report 163 2001 (Department of Sustainability, Environment, Water, Population and Communities: Canberra, ACT).

[17]  R. S. Eriksen, D. J. Mackey, R. van Dam, B. Nowak, Copper speciation and toxicity in Macquarie Harbour, Tasmania: an investigation using a copper ion-selective electrode. Mar. Chem. 2001a, 74, 99.
Copper speciation and toxicity in Macquarie Harbour, Tasmania: an investigation using a copper ion-selective electrode.CrossRef | 1:CAS:528:DC%2BD3MXhvFWls7k%3D&md5=614477754576374054b7968382cd2ea0CAS | open url image1

[18]  W. G. Sunda, P. J. Hanson, Chemical speciation of copper in river water, in Chemical Modeling in Aqueous Systems (Ed. E. Jenne) 1979, ACS Symposium Series, vol. 93, pp. 147–180 (American Chemical Society: Washington, DC).

[19]  M. M. Kogut, B. M. Voelker, Strong copper-binding behavior of terrestrial humic substances in seawater. Environ. Sci. Technol. 2001, 35, 1149.
Strong copper-binding behavior of terrestrial humic substances in seawater.CrossRef | 1:CAS:528:DC%2BD3MXhtFyns74%3D&md5=d7c26ec6357190d79e4520cbeea9d551CAS | open url image1

[20]  P. R. Paquin, R. C. Santore, K. B. We, C. D. Kavvadas, D. M. Di Toro, The biotic ligand model: a model of the acute toxicity of metals to aquatic life. Environ. Sci. Policy 2000, 3, 175.
The biotic ligand model: a model of the acute toxicity of metals to aquatic life.CrossRef | open url image1

[21]  R. Benner, Chemical composition and reactivity, in Biogeochemistry of Marine Dissolved Organic Matter (Eds D. A. Hansell, C. A. Carlson) 2002, pp. 59–90 (Elsevier: Atlanta, GA, USA).

[22]  S. G. S. DePalma, W. R. Arnold, J. C. McGeer, D. G. Dixon, D. S. Smith, Effects of dissolved organic matter and reduced sulphur on copper bioavailability in coastal marine environments. Ecotoxicol. Environ. Saf. 2011, 74, 230.
Effects of dissolved organic matter and reduced sulphur on copper bioavailability in coastal marine environments.CrossRef | 1:CAS:528:DC%2BC3MXisF2itro%3D&md5=3ba79f16b1292fe11fc57126be0579bcCAS | open url image1

[23]  W. R. Arnold, R. L. Diamond, D. S. Smith, The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer Brachionus plicatilis (‘L’ strain). Arch. Environ. Contam. Toxicol. 2010, 59, 225.
The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer Brachionus plicatilis (‘L’ strain).CrossRef | 1:CAS:528:DC%2BC3cXptFGktrc%3D&md5=b891d4291c8a3fea5d48619ad1e58028CAS | 20101399PubMed | open url image1

[24]  J. I. Lorenzo, O. Nieto, R. Beiras, Anodic stripping voltammetry measures copper bioavailability for sea urchin larvae in the presence of fulvic acids. Environ. Toxicol. Chem. 2006, 25, 36.
Anodic stripping voltammetry measures copper bioavailability for sea urchin larvae in the presence of fulvic acids.CrossRef | 1:CAS:528:DC%2BD28Xptlyr&md5=7f7b397a841a8e3c6cda62ad61aae7baCAS | 16494222PubMed | open url image1

[25]  K. A. C. De Schamphelaere, F. M. Vasconcelos, F. M. G. Tack, H. E. Allen, C. R. Janssen, Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ. Toxicol. Chem. 2004, 23, 1248.
Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna.CrossRef | 1:CAS:528:DC%2BD2cXjvFKhtrk%3D&md5=99ff212f2c0430d6e2c1484ee3adad77CAS | open url image1

[26]  S. R. Nadella, J. L. Fitzpatrick, N. Franklin, C. Bucking, D. S. Smith, C. M. Wood, Toxicity of Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilis trossolus) and the protective effect of dissolved organic carbon. Comp. Biochem. Physiol. C 2009, 149, 340. open url image1

[27]  D. M. McKnight, E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, D. T. Andersen, Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38.
Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity.CrossRef | 1:CAS:528:DC%2BD3MXhtFKjtrk%3D&md5=e7b454cd0fc5b0b9c96e44982580d803CAS | open url image1

[28]  J. E. Birdwell, A. S. Engel, Variability in terrestrial and microbial contributions to dissolved organic matter fluorescence in the Edwards Aquifer, central Texas. J. Caves Karst Stud. 2009, 71, 144.
| 1:CAS:528:DC%2BD1MXhtlOkt7fL&md5=71f5c9497b4fefe83ed41a9ffc7c97ccCAS | open url image1

[29]  B. Eikebrokk, T. Juhna, S. W. Østerhus. Water treatment by enhanced coagulation – operational status and optimization issues. Technical Report D 5.3.1a 2006 (ECHNEAU: Marigny, France).

[30]  C. D. Luider, J. Crusius, R. C. Playle, P. J. Curtis, Influence of natural organic matter source on copper speciation by Cu binding to fish gills, by ion selective electrode and by DGT gel samples. Environ. Sci. Technol. 2004, 38, 2865.
Influence of natural organic matter source on copper speciation by Cu binding to fish gills, by ion selective electrode and by DGT gel samples.CrossRef | 1:CAS:528:DC%2BD2cXjt1ajt74%3D&md5=c6ee43fd43763a8f74e4fe0bd52d8cbfCAS | 15212261PubMed | open url image1

[31]  J. Pempkowiak, J. Kozuch, H. Grzegowska, E. T. Gjessing, Biological vs. chemical properties of natural organic matter isolated from selected Norwegian lakes. Environ. Int. 1999, 25, 357.
Biological vs. chemical properties of natural organic matter isolated from selected Norwegian lakes.CrossRef | 1:CAS:528:DyaK1MXjsFyisLw%3D&md5=21d7580847ae1471108ad0aff9112d94CAS | open url image1

[32]  M. L. Schwartz, P. J. Curtis, R. C. Playle, Influence of natural organic matter source on acute copper, lead, and cadmium toxicity to rainbow trout Oncorhynchus mykiss. Environ. Toxicol. Chem. 2004, 23, 2889.
Influence of natural organic matter source on acute copper, lead, and cadmium toxicity to rainbow trout Oncorhynchus mykiss.CrossRef | 15648764PubMed | open url image1

[33]  H. A. Al-Reasi, D. S. Smith, C. M. Wood, Evaluating the ameliorative effect of natural dissolved organic matter (DOM) quality on copper toxicity to Daphnia magna: improving the BLM. Ecotoxicology 2012, 21, 524.
Evaluating the ameliorative effect of natural dissolved organic matter (DOM) quality on copper toxicity to Daphnia magna: improving the BLM.CrossRef | 1:CAS:528:DC%2BC38XitFamtro%3D&md5=a904bdc232a32d246057739bd7d94eaaCAS | 22072428PubMed | open url image1

[34]  D. S. Smith, J. R. Kramer, Fluorescence analysis for multi-site aluminium binding to natural organic matter. Environ. Int. 1999, 25, 295.
Fluorescence analysis for multi-site aluminium binding to natural organic matter.CrossRef | 1:CAS:528:DyaK1MXjsFyis7g%3D&md5=3ba9f5090e19409d4fed1751d3c63d8bCAS | open url image1

[35]  A. Baker, Fluorescence excitation–emission matrix characterization of some sewage-impacted rivers. Environ. Sci. Technol. 2001, 35, 948.
Fluorescence excitation–emission matrix characterization of some sewage-impacted rivers.CrossRef | 1:CAS:528:DC%2BD3MXmtFyrtw%3D%3D&md5=ef7149ba7234b37b76a4cbad5dafe8ddCAS | 11351540PubMed | open url image1

[36]  C. A. Stedmon, S. Markager, Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 2005, 50, 686.
Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis.CrossRef | 1:CAS:528:DC%2BD2MXjtFahsLc%3D&md5=0036a77a53e9f9511aa19e5421ea2535CAS | open url image1

[37]  F. C. Wu, R. D. Evans, P. J. Dillon, Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection. Environ. Sci. Technol. 2003, 37, 3687.
Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection.CrossRef | 1:CAS:528:DC%2BD3sXlsFOgsLw%3D&md5=cb04a907d07622b296bdeb45950e0d86CAS | 12953882PubMed | open url image1

[38]  R. M. Cory, D. M. McKnight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 2005, 39, 8142.
Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter.CrossRef | 1:CAS:528:DC%2BD2MXhtVCjsrvO&md5=81b2473918c8960a68df6d4c4e055609CAS | 16294847PubMed | open url image1

[39]  A. Winter, T. Fish, R. Playle, D. S. Smith, P. Curtis, Photodegradation of natural organic matter from diverse freshwater sources. Aquat. Toxicol. 2007, 84, 215.
Photodegradation of natural organic matter from diverse freshwater sources.CrossRef | 1:CAS:528:DC%2BD2sXpt1Cjsbc%3D&md5=297c54f3de266a7bab60617f57484b2aCAS | 17640746PubMed | open url image1

[40]  P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar. Chem. 1996, 51, 325.
Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy.CrossRef | 1:CAS:528:DyaK28XnslWltg%3D%3D&md5=3b3580b8f386669aa83e63cebce7f46cCAS | open url image1

[41]  C. A. Stedmon, R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr. Methods 2008, 6, 572.
Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial.CrossRef | 1:CAS:528:DC%2BD1MXhtVWqsL%2FL&md5=1c20554e40f0d033f021e7af2029f038CAS | open url image1

[42]  T. Ohno, Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742.
Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter.CrossRef | 1:CAS:528:DC%2BD38XlvFai&md5=86eba67ef5f9b144cdec0276a35a1f81CAS | 11878392PubMed | open url image1

[43]  T. Larsson, M. Wedborg, D. Turner, Correction of inner-filter effect in fluorescence excitation–emission matrix spectrometry using Raman scatter. Anal. Chim. Acta 2007, 583, 357.
Correction of inner-filter effect in fluorescence excitation–emission matrix spectrometry using Raman scatter.CrossRef | 1:CAS:528:DC%2BD2sXnsleqsA%3D%3D&md5=5f1cd66499e811f42c6297fb5a354a61CAS | 17386567PubMed | open url image1

[44]  Standard guide for acute toxicity test with the rotifer Brachionus. E 1440–91, in Annual Book of ASTM Standards 2004, vol. 11.05, pp. 830–837 (American Society for the Testing of Materials International: West Conshohocken, PA).

[45]  Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136 1995 (US EPA: Washington, DC).

[46]  T. Tait, L. M. Rabson, R. L. Diamond, C. A. Cooper, J. C. McGeer, D. S. Smith, Determination of cupric ion concentrations in marine waters: an improved procedure and comparison with other speciation methods. Environ. Chem. 2015,
Determination of cupric ion concentrations in marine waters: an improved procedure and comparison with other speciation methods.CrossRef | open url image1

[47]  A. E. Martell, R. M. Smith, NIST Standard Reference Database 46, Version 8.0 (Ed. R. J. Motekaitis) 2004 (National Institute of Standards and Technology: Gaithersburg, MD, USA).

[48]  W.-H. Xie, W.-Y. Shiu, D. Mackay, A review of the effect of salts on the solubility of organic compounds in seawater. Mar. Environ. Res. 1997, 44, 429.
A review of the effect of salts on the solubility of organic compounds in seawater.CrossRef | 1:CAS:528:DyaK2sXmtVKlsrw%3D&md5=7810e7618cc9f6588b2ec740e4a8a9aeCAS | open url image1

[49]  F. J. Millero, R. Woosley, B. Ditrolio, J. Waters, Effect of ocean acidification on the speciation of metals in seawater. Oceanography 2009, 22, 72.
Effect of ocean acidification on the speciation of metals in seawater.CrossRef | open url image1

[50]  R. Mantoura, M. Woodward, Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim. Cosmochim. Acta 1983, 47, 1293.
Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications.CrossRef | 1:CAS:528:DyaL3sXkslCns70%3D&md5=e81205a043495fc7410ecca999d79a8eCAS | open url image1

[51]  W. R. Arnold, J. S. Cotsifas, R. S. Ogle, S. G. S. DePalma, D. S. Smith, A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations. Environ. Toxicol. Chem. 2010a, 29, 311.
A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations.CrossRef | 20821449PubMed | open url image1

[52]  H. K. Christenson, DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids. J. Chem. Soc., Faraday Trans. 1984, 80, 1933.
DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids.CrossRef | 1:CAS:528:DyaL2cXmtFKqtr8%3D&md5=0f8c167c7a3d12392a4672699c6f1e90CAS | open url image1

[53]  Y. Liang, N. Hilal, P. Langston, V. Starov, Interaction forces between colloidal particles in liquid: theory and experiment. Adv. Colloid Interface Sci. 2007, 134–135, 151.
Interaction forces between colloidal particles in liquid: theory and experiment.CrossRef | 17499205PubMed | open url image1

[54]  C. A. Cooper, T. Tait, H. Gray, G. Cimprich, R. C. Santore, J. C. McGeer, C. M. Wood, D. S. Smith, Influence of salinity and dissolved organic carbon on acute toxicity to the rotifer Brachionus plicatilis.. Environ. Sci. Technol. 2014, 48, 1213.
Influence of salinity and dissolved organic carbon on acute toxicity to the rotifer Brachionus plicatilis..CrossRef | 1:CAS:528:DC%2BC2cXot1Or&md5=abed7ff0724e3da306f20dfb6230be61CAS | 24380586PubMed | open url image1

[55]  S. J. Brooks, T. Bolam, L. Tolhurst, J. Bassett, J. La Roche, M. Waldock, J. Barry, K. V. Thomas, Effects of dissolved organic carbon on the toxicity of copper to the developing embryos of the pacific oyster (Crassostrea gigas). Environ. Toxicol. Chem. 2007, 26, 1756.
Effects of dissolved organic carbon on the toxicity of copper to the developing embryos of the pacific oyster (Crassostrea gigas).CrossRef | 1:CAS:528:DC%2BD2sXot1Omt7Y%3D&md5=dd808b064453a4e2129e5f9bc1ca5642CAS | 17702352PubMed | open url image1

[56]  S. R. Nadella, M. Tellis, R. Diamond, D. S. Smith, A. Bianchini, C. M. Wood, Toxicity of lead and zinc to developing mussel an sea urchin embryos: critical tissue residues and effects of dissolved organic matter and salinity. Comp. Biochem. Physiol. C 2013, 158, 72.
| 1:CAS:528:DC%2BC3sXhtVWgtrvF&md5=4c48aa4c286bd1bb1b93eee88628da5dCAS | open url image1

[57]  W. R. Arnold, J. Cotsifas, K. M. Corneillie, Validation and update of a model used to predict copper toxicity to the marine bivalve Mytilus sp. Environ. Toxicol. 2006, 21, 65.
Validation and update of a model used to predict copper toxicity to the marine bivalve Mytilus sp.CrossRef | 1:CAS:528:DC%2BD28XitVajtbo%3D&md5=b9eaee2d151d1bbae50223904ba88eebCAS | 16463261PubMed | open url image1

[58]  J. Pempkowiak, J. Kozuch, The influence of structural features of marine humic substances on the accumulation rates of cadmium by a blue mussel Mytilus edulis. Environ. Int. 1994, 20, 391.
The influence of structural features of marine humic substances on the accumulation rates of cadmium by a blue mussel Mytilus edulis.CrossRef | 1:CAS:528:DyaK2cXms1aqtL0%3D&md5=68a3abd8668caf4ab2c27a854a210c9aCAS | open url image1

[59]  J. I. Lorenzo, O. Nieto, R. Beiras, Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. Aquat. Toxicol. 2002, 58, 27.
Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater.CrossRef | 1:CAS:528:DC%2BD38XjtVShtr0%3D&md5=678ea0e4cf50fa28e0b8de6767408600CAS | 12062153PubMed | open url image1

[60]  J. I. Lorenzo, R. Beiras, V. K. Mubiana, R. Blust, Copper uptake by Mytilus edulis in the presence of humic acids. Environ. Toxicol. Chem. 2005, 24, 973.
Copper uptake by Mytilus edulis in the presence of humic acids.CrossRef | 1:CAS:528:DC%2BD2MXivVGgsrY%3D&md5=5263424a4bdcaf380a59a595eddb615eCAS | 15839573PubMed | open url image1

[61]  W. G. Sunda, R. L. Ferguson, Sensitivity of natural bacterial communities to additions of copper and to cupric ion activity: a bioassay of copper complexation in seawater, in Trace Metals in Seawater (Eds C. S. Wong, E. Boyle, K. Bruland, J. D. Burton) 1983, pp. 871–891 (Plenum Press: New York).

[62]  W. G. Sunda, R. R. L. Guillard, The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res. 1976, 34, 511.
| 1:CAS:528:DyaE2sXjvVaqtA%3D%3D&md5=b4418c026b8d44a52090b53b4fe8b1cdCAS | open url image1

[63]  L. E. Brand, W. G. Sunda, R. R. L. Guillard, Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 1986, 96, 225.
Reduction of marine phytoplankton reproduction rates by copper and cadmium.CrossRef | 1:CAS:528:DyaL28XktlOjtb0%3D&md5=38baa7d9dd80a1c046b858ee646a72daCAS | open url image1

[64]  J. L. Stauber, M. Ahsanulluh, B. Nowak, R. Eriksen, T. M. Florence, Toxicity assessment of waters from Macquarie Harbour, western Tasmania, using algae, invertebrates and fish. Supervising Scientist Report 112 1996 (Department of Environment and Land Management: Hobart, Tas.).

[65]  C. M. Wood, H. A. Al-Reasi, D. S. Smith, The two faces of DOC. Aquat. Toxicol. 2011, 105, 3.
The two faces of DOC.CrossRef | 1:CAS:528:DC%2BC3MXhsV2mu7zF&md5=c027b9c84767c8ddb673b0bc79147689CAS | 22099339PubMed | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (273 KB) Export Citation Cited By (1)