Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Compositions and isotopic differences of iso- and anteiso-alkanes in black mangroves (Avicennia germinans) across a salinity gradient in a subtropical estuary

Ding He A B D , Bernd R. T. Simoneit C , Blanca Jara B and Rudolf Jaffé A B
+ Author Affiliations
- Author Affiliations

A Southeast Environmental Research Center, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.

B Department of Chemistry & Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA.

C Department of Chemistry, Oregon State University, 2100 SW Campus Way, Corvallis, OR 97331, USA.

D Corresponding author. Present address: Department of Marine Science, University of Georgia, 220 Marine Sciences Building, Athens, GA 30602, USA. Email: dhe001@fiu.edu; dinghe@uga.edu

Environmental Chemistry 13(4) 623-630 https://doi.org/10.1071/EN15128
Submitted: 22 June 2015  Accepted: 25 September 2015   Published: 23 November 2015

Environmental context. Mangroves dominate at the interface between land and sea, especially along tropical and subtropical coasts. To gain a better understanding of how mangroves respond to various environmental stress factors, we investigated the use of monomethylalkanes as potential chemical tracers for black mangroves. The application of these chemical tracers could elucidate how black mangroves respond to environmental stress such as sea level rise in mixed mangrove environments.

Abstract. A series of iso- and anteiso-monomethylalkanes (MMAs) with carbon numbers from C23 to C35 and C14 to C34 respectively were detected in Avicennia germinans. These compounds were present in varying amounts up to 54.1, 1.0 and 3.4 µg g–1 dry weight in the leaves, bark and the crustose lichens attached to the bark of A. germinans respectively. These MMAs were not detected in the leaf waxes of Rhizophora mangle and Laguncularia racemosa, but were detected in significantly lower abundances (2–6 % of that in A. germinans leaf wax) in the bark and lichen of R. mangle. Significant odd-carbon number distributions and even-carbon number distributions were observed for long chain (C ≥ 25) iso- (maximising at C31) and anteiso-MMAs (maximising at C32) respectively in A. germinans leaf wax. However, no obvious carbon number preferences were detected for bark and lichen. The long chain (LC) iso- and anteiso-MMAs in A. germinans leaf waxes were found to be enriched in 13C by 0.3–4.3 and 0.7–4.2 per mille (‰) compared to the n-alkanes with the same carbon numbers respectively across the salinity gradient of 19.7–32.0 practical salinity units (psu). In comparison, the LC iso- and anteiso-MMAs were found to be more depleted in D by 6.1–55.1 and 7.3–57.0 ‰ compared to the n-alkanes with same carbon numbers respectively. The results imply that A. germinans could be another important source of iso- and anteiso-alkanes in sediments and soils, and that these compounds could potentially be used as biomarkers for this species in mixed mangrove environments.

Additional keywords: compound-specific carbon and hydrogen isotopes, estuary.


References

[1]  R. M. Smith, J. A. Marshall, M. R. Davey, K. C. Lowe, J. B. Power, Comparison of volatiles and waxes in leaves of genetically engineered tomatoes. Phytochemistry 1996, 43, 753.
Comparison of volatiles and waxes in leaves of genetically engineered tomatoes.CrossRef | 1:CAS:528:DyaK28XmsVegs74%3D&md5=b730eaff4c1a0f023c555e3b76c8bb57CAS |

[2]  S. M. Goodwin, N. Kolosova, C. M. Kish, K. V. Wood, N. Dudareva, M. A. Jenks, Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol. Plant. 2003, 117, 435.
Cuticle characteristics and volatile emissions of petals in Antirrhinum majus.CrossRef | 1:CAS:528:DC%2BD3sXkslCitrk%3D&md5=fe7da1cadd34409a89d17de1e8d2e9f4CAS | 12654045PubMed |

[3]  S. Bauer, E. Schulte, H.-P. Thier, Composition of the surface waxes from bell pepper and eggplant. Eur. Food Res. Technol. 2005, 220, 5.
Composition of the surface waxes from bell pepper and eggplant.CrossRef | 1:CAS:528:DC%2BD2MXmvFCnug%3D%3D&md5=59c64018978a6893b04bc97a39b3f9c1CAS |

[4]  X. Huang, P. A. Meyers, W. Wu, C. Jia, S. Xie, Significance of long chain iso and anteiso monomethyl alkanes in the Lamiaceae (mint family). Org. Geochem. 2011, 42, 156.
Significance of long chain iso and anteiso monomethyl alkanes in the Lamiaceae (mint family).CrossRef | 1:CAS:528:DC%2BC3MXhsFCgs7Y%3D&md5=7fccf4812d42842b1a68c12446ebf491CAS |

[5]  D. R. Nelson, J. W. Dillwith, G. J. Blomquist, Cuticular hydrocarbons of the house fly, Musca domestica. Insect Biochem. 1981, 11, 187.
Cuticular hydrocarbons of the house fly, Musca domestica.CrossRef | 1:CAS:528:DyaL3MXksFygtbo%3D&md5=b08a810c96245d0851ed6293b2fc6b57CAS |

[6]  U. R. Bernier, D. A. Carlson, C. J. Geden, Gas chromatography/mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax. J. Am. Soc. Mass Spectrom. 1998, 9, 320.
Gas chromatography/mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax.CrossRef | 1:CAS:528:DyaK1cXisVKjtbg%3D&md5=95adbd7de43101390ff48fa16cac0e5fCAS |

[7]  J. Shiea, S. C. Brassell, D. M. Ward, Mid-chain branched mono-and dimethyl alkanes in hot spring cyanobacterial mats: a direct biogenic source for branched alkanes in ancient sediments? Org. Geochem. 1990, 15, 223.
Mid-chain branched mono-and dimethyl alkanes in hot spring cyanobacterial mats: a direct biogenic source for branched alkanes in ancient sediments?CrossRef | 1:CAS:528:DyaK3cXmtlCms7s%3D&md5=b2463443e96bdb5fcfb1159b522ddfe1CAS |

[8]  D. He, B. R. T. Simoneit, B. Jara, R. Jaffé, Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades. Chemosphere 2015, 119, 258.
Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades.CrossRef | 1:CAS:528:DC%2BC2cXht12nsbnK&md5=13be2b1efb2ff24686e697c28a9a7d69CAS | 25033241PubMed |

[9]  W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, Sources of fine organic aerosol: 6. Cigarette smoke in the urban atmosphere. Environ. Sci. Technol. 1994, 28, 1375.
Sources of fine organic aerosol: 6. Cigarette smoke in the urban atmosphere.CrossRef | 1:CAS:528:DyaK2cXktFKltrw%3D&md5=349dd228328a702cd00d80e6982dcc0eCAS | 22176334PubMed |

[10]  I. G. Kavouras, N. Stratigakis, E. G. Stephanou, Iso- and anteiso-alkanes: specific tracers of environmental tobacco smoke in indoor and outdoor particle-size distributed urban aerosols. Environ. Sci. Technol. 1998, 32, 1369.
Iso- and anteiso-alkanes: specific tracers of environmental tobacco smoke in indoor and outdoor particle-size distributed urban aerosols.CrossRef | 1:CAS:528:DyaK1cXislShtro%3D&md5=81d39fd3b6394e7e835baadf2b15e1c5CAS |

[11]  R. E. Summons, T. G. Powell, C. J. Boreham, Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 1988, 52, 1747.
Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons.CrossRef | 1:CAS:528:DyaL1cXltlWktbg%3D&md5=9b455886281560840b530f3eccf2640cCAS |

[12]  K. Fukushima, M. Mochizuki, H. Hayashi, R. Ishikawa, H. Uemura, K. Ogura, A. Tanaka, Long-chain anteiso compound series found in acidified freshwater lake sediments in Japan: Lake Tazawa-ko. Geochem. J. 1996, 30, 111.
Long-chain anteiso compound series found in acidified freshwater lake sediments in Japan: Lake Tazawa-ko.CrossRef | 1:CAS:528:DyaK28XktFyntrw%3D&md5=32716529217b666b5b3d633961526ed4CAS |

[13]  G. A. Logan, M. C. Hinman, M. R. Walter, R. E. Summons, Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, Northern Territory, Australia. Geochim. Cosmochim. Acta 2001, 65, 2317.
Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, Northern Territory, Australia.CrossRef | 1:CAS:528:DC%2BD3MXkvVWms7w%3D&md5=177538cc756fc04f0c0aa8eb44051faeCAS |

[14]  I. M. Höld, S. Schouten, J. Jellema, J. S. S. Damsté, Origin of free and bound mid-chain methyl alkanes in oils, bitumens and kerogens of the marine, Infracambrian Huqf Formation (Oman). Org. Geochem. 1999, 30, 1411.
Origin of free and bound mid-chain methyl alkanes in oils, bitumens and kerogens of the marine, Infracambrian Huqf Formation (Oman).CrossRef |

[15]  H. Lu, P. A. Peng, Y. Sun, Molecular and stable carbon isotopic composition of monomethylalkanes from one oil sand sample: source implications. Org. Geochem. 2003, 34, 745.
Molecular and stable carbon isotopic composition of monomethylalkanes from one oil sand sample: source implications.CrossRef | 1:CAS:528:DC%2BD3sXjsFOktbc%3D&md5=1cb8ff286e8fdde0a60da7594c5bcae4CAS |

[16]  J. Han, E. McCarthy, M. Calvin, M. Benn, Hydrocarbon constituents of the blue-green algae Nostoc muscorum, Anacystis nidulans, Phormidium luridium and Chlorogloea fritschii. J. Chem. Soc. – C Org. 1968, 1968, 2785.
Hydrocarbon constituents of the blue-green algae Nostoc muscorum, Anacystis nidulans, Phormidium luridium and Chlorogloea fritschii.CrossRef |

[17]  J. Han, M. Calvin, Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc. Natl. Acad. Sci. USA 1969, 64, 436.
Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments.CrossRef | 1:CAS:528:DyaE3cXmtlyjsQ%3D%3D&md5=e710c4f913ce5a9080243502e8e29a0eCAS | 5261025PubMed |

[18]  V. M. Dembitsky, I. Shkrob, I. Dor, Separation and identification of hydrocarbons and other volatile compounds from cultured blue-green alga Nostoc sp. by gas chromatography–mass spectrometry using serially coupled capillary columns with consecutive nonpolar and semipolar stationary phases. J. Chromatogr. A 1999, 862, 221.
Separation and identification of hydrocarbons and other volatile compounds from cultured blue-green alga Nostoc sp. by gas chromatography–mass spectrometry using serially coupled capillary columns with consecutive nonpolar and semipolar stationary phases.CrossRef | 1:CAS:528:DyaK1MXntVeqt74%3D&md5=8a9aa871623e83949253e6dc5b8a4a08CAS | 10596980PubMed |

[19]  M. Maffei, Discriminant analysis of leaf wax alkanes in the Lamiaceae and four other plant families. Biochem. Syst. Ecol. 1994, 22, 711.
Discriminant analysis of leaf wax alkanes in the Lamiaceae and four other plant families.CrossRef | 1:CAS:528:DyaK2cXmslKrtbY%3D&md5=3c37fdadaf6011b1a184faea465c66bfCAS |

[20]  K. Grice, H. Lu, Y. Zhou, H. Stuart-Williams, G. D. Farquhar, Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso-(3-methyl) and iso-(2-methyl) alkanes in tobacco leaves. Phytochemistry 2008, 69, 2807.
Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso-(3-methyl) and iso-(2-methyl) alkanes in tobacco leaves.CrossRef | 1:CAS:528:DC%2BD1cXhsVWmurzO&md5=bc132dd21d894e614bf27e4d993d866bCAS | 18954883PubMed |

[21]  Y. Zhou, K. Grice, H. Stuart-Williams, G. D. Farquhar, C. H. Hocart, H. Lu, W. Liu, Biosynthetic origin of the saw-toothed profile in δ13C and δ2H of n-alkanes and systematic isotopic differences between n-, iso-and anteiso-alkanes in leaf waxes of land plants. Phytochemistry 2010, 71, 388.
Biosynthetic origin of the saw-toothed profile in δ13C and δ2H of n-alkanes and systematic isotopic differences between n-, iso-and anteiso-alkanes in leaf waxes of land plants.CrossRef | 1:CAS:528:DC%2BC3cXitVOnu7o%3D&md5=0c76107dc2921b03508d4ae72a74b76fCAS | 20056262PubMed |

[22]  R. S. Dodd, F. Blasco, Z. A. Rafii, E. Torquebiau, Mangroves of the United Arab Emirates: ecotypic diversity in cuticular waxes at the bioclimatic extreme. Aquat. Bot. 1999, 63, 291.
Mangroves of the United Arab Emirates: ecotypic diversity in cuticular waxes at the bioclimatic extreme.CrossRef |

[23]  S. Bouillon, A. V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N. C. Duke, E. Kristensen, S. Y. Lee, C. Marchand, J. J. Middelburg, V. H. Rivera-Monroy, T. J. Smith, R. R. Twilley, Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem. Cycles 2008, 22, GB2013.
Mangrove production and carbon sinks: a revision of global budget estimates.CrossRef |

[24]  V. H. Rivera-Monroy, R. R. Twilley, S. E. Davis, D. L. Childers, M. Simard, R. Chambers, R. Jaffé, J. N. Boyer, D. T. Rudnick, K. Zhang, E. Castañeda-Moya, S. M. L. Ewe, R. M. Price, C. Coronado-Molina, M. Ross, T. J. Smith, B. Michot, E. Meselhe, W. Nuttle, T. G. Troxler, G. B. Noe, The role of the Everglades Mangrove Ecotone Region (EMER) in regulating nutrient cycling and wetland productivity in south Florida. Crit. Rev. Environ. Sci. Technol. 2011, 41, 633.
The role of the Everglades Mangrove Ecotone Region (EMER) in regulating nutrient cycling and wetland productivity in south Florida.CrossRef | 1:CAS:528:DC%2BC3MXit1aqt7Y%3D&md5=385f695b6eaf78bbe760c1f326aa6bf4CAS |

[25]  E. Castañeda-Moya, R. R. Twilley, V. H. Rivera-Monroy, Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For. Ecol. Manage. 2013, 307, 226.
Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA.CrossRef |

[26]  L. Gao, Y. Huang, Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: Implications for leaf wax reproduction and plant physiology. Oecol. 2013, 172, 347.
Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: Implications for leaf wax reproduction and plant physiology.CrossRef |

[27]  L. Gao, J. Guimond, E. Thomas, Y. Huang, Major trends in leaf wax abundance, δ2H and δ13C values along leaf venation in five species of C3 plants: physiological and geochemical implications. Org. Geochem. 2015, 78, 144.
Major trends in leaf wax abundance, δ2H and δ13C values along leaf venation in five species of C3 plants: physiological and geochemical implications.CrossRef | 1:CAS:528:DC%2BC2cXitFKlurnO&md5=31cc6de39aa39c1b8404af2676cfa5c6CAS |

[28]  D. He, R. N. Mead, L. Belicka, O. Pisani, R. Jaffé, Assessing source contributions to particulate organic matter in a subtropical estuary: a biomarker approach. Org. Geochem. 2014, 75, 129.
Assessing source contributions to particulate organic matter in a subtropical estuary: a biomarker approach.CrossRef | 1:CAS:528:DC%2BC2cXht1GmsrvP&md5=775449ece720e0f496b046bdc8f201a5CAS |

[29]  E. Kováts, Gas chromatographic characterization of organic compounds. I. Retention indexes of aliphatic halides, alcohols, aldehydes, and ketones. Helv. Chim. Acta 1958, 41, 1915.
Gas chromatographic characterization of organic compounds. I. Retention indexes of aliphatic halides, alcohols, aldehydes, and ketones.CrossRef |

[30]  Ž. Krkošová, R. Kubinec, L. Soják, A. Amann, Temperature-programmed gas chromatography linear retention indices of all C4–C30 monomethylalkanes on methylsilicone OV-1 stationary phase: contribution towards a better understanding of volatile organic compounds in exhaled breath. J. Chromatogr. A 2008, 1179, 59.
Temperature-programmed gas chromatography linear retention indices of all C4–C30 monomethylalkanes on methylsilicone OV-1 stationary phase: contribution towards a better understanding of volatile organic compounds in exhaled breath.CrossRef | 18021789PubMed |

[31]  T. B. Coplen, C. Kendall, J. Hopple, Comparison of stable isotope reference samples. Nature 1983, 302, 236.
Comparison of stable isotope reference samples.CrossRef | 1:CAS:528:DyaL3sXhsVKqu7o%3D&md5=9251baa8dbb26a533f846b49782acedcCAS |

[32]  C. M. Reddy, T. I. Eglinton, R. Palić, B. C. Benitez-Nelson, G. Stojanović, I. Palić, S. Djordjević, G. Eglinton, Even carbon number predominance of plant wax n-alkanes: a correction. Org. Geochem. 2000, 31, 331.
Even carbon number predominance of plant wax n-alkanes: a correction.CrossRef | 1:CAS:528:DC%2BD3cXktFartr0%3D&md5=6d6b0e3109be1ed72ad22be5580e37a8CAS |

[33]  B. M. Szafranek, E. E. Synak, Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 2006, 67, 80.
Cuticular waxes from potato (Solanum tuberosum) leaves.CrossRef | 1:CAS:528:DC%2BD2MXhtlCrsb%2FM&md5=43b14e3fe1e49a3991ef7dd6b30d22b9CAS | 16310230PubMed |

[34]  B. Jansen, K. G. Nierop, J. A. Hageman, A. M. Cleef, J. M. Verstraten, The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes. Org. Geochem. 2006, 37, 1514.
The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes.CrossRef | 1:CAS:528:DC%2BD28XhtFylurbF&md5=247222c2a7aed61cb8502c755dfbdf52CAS |

[35]  T. K. Kuhn, E. S. Krull, A. Bowater, K. Grice, G. Gleixner, The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Org. Geochem. 2010, 41, 88.
The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils.CrossRef | 1:CAS:528:DC%2BC3cXmvV2nuw%3D%3D&md5=1ff9dfacaa7922881aff3e3b41fc6e31CAS |

[36]  X. Huang, J. Xue, S. Guo, Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records. Front. Earth Sci. 2012, 6, 95.
Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records.CrossRef | 1:CAS:528:DC%2BC38XjvVSku7s%3D&md5=ae3d1c6115b6feb7d0883ba2c906b9b4CAS |

[37]  J. W. Collister, G. Rieley, B. Stern, G. Eglinton, B. Fry, Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org. Geochem. 1994, 21, 619.
Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms.CrossRef | 1:CAS:528:DyaK2cXlslGhtr4%3D&md5=7121ee6129e480ad660db21ae0717724CAS |

[38]  S. N. Ladd, J. P. Sachs, Positive correlation between salinity and n-alkane δ13C values in the mangrove Avicennia marina. Org. Geochem. 2013, 64, 1.
Positive correlation between salinity and n-alkane δ13C values in the mangrove Avicennia marina.CrossRef | 1:CAS:528:DC%2BC3sXhs1KisbbI&md5=5d77ceeac870255791d1a8d636776e1bCAS |

[39]  S. N. Ladd, J. P. Sachs, Inverse relationship between salinity and n-alkane δD values in the mangrove Avicennia marina. Org. Geochem. 2012, 48, 25.
Inverse relationship between salinity and n-alkane δD values in the mangrove Avicennia marina.CrossRef |

[40]  P. Saenger, Mangrove Ecology, Silviculture and Conservation 2002 (Kluwer Academic Publishers: Dordrecht, Netherlands; and The Society for Mangrove Ecosystems/International Tropical Timber Organization: Okinawa, Japan).

[41]  K. Kathiresan, B. L. Bingham, Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81.
Biology of mangroves and mangrove ecosystems.CrossRef |

[42]  G. J. Versteegh, E. Schefuß, L. Dupont, F. Marret, J. S. S. Damsté, J. F. Jansen, Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochim. Cosmochim. Acta 2004, 68, 411.
Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems.CrossRef | 1:CAS:528:DC%2BD2cXkt12mug%3D%3D&md5=282132f7112506ae985224156243e038CAS |

[43]  B. P. Koch, P. W. Souza Filho, H. Behling, M. C. Cohen, G. Kattner, J. Rullkötter, B. M. Scholz-Böttcher, R. J. Lara, Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle). Org. Geochem. 2011, 42, 62.
Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle).CrossRef | 1:CAS:528:DC%2BC3MXivF2nug%3D%3D&md5=5f0372267ad84be419864c018114cf8eCAS |

[44]  F. Kenig, J. S. S. Damsté, A. Kock-van Dalen, W. I. C. Rijpstra, A. Y. Huc, J. W. de Leeuw, Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochim. Cosmochim. Acta 1995, 59, 2999.
Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates.CrossRef | 1:CAS:528:DyaK2MXnt1amu7g%3D&md5=94ef60a9b809d5c619b0e0418b888955CAS |

[45]  J. L. Breithaupt, J. M. Smoak, T. J. Smith, C. J. Sanders, Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. J. Geophys. Res. Biogeosci. 2014, 119, 2032.
Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades.CrossRef | 1:CAS:528:DC%2BC2cXhvFSntb%2FE&md5=b84d53bd63de54502b5a050fc756267bCAS |

[46]  F. Kenig, C16–C29 homologous series of monomethylalkanes in the pyrolysis products of a Holocene microbial mat. Org. Geochem. 2000, 31, 237.
C16–C29 homologous series of monomethylalkanes in the pyrolysis products of a Holocene microbial mat.CrossRef | 1:CAS:528:DC%2BD3cXitlaitrg%3D&md5=2975a55e5e4cd462d64b48449c7ce9f0CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (867 KB) Export Citation Cited By (4)