Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Toxicity of engineered copper (Cu0) nanoparticles to the green alga Chlamydomonas reinhardtii

Emanuel Müller A B , Renata Behra A B and Laura Sigg A B C

A Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.

B ETH (Eidgenössische Technische Hochschule) Zürich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, CH-8092 Zürich, Switzerland.

C Corresponding author: laura.sigg@eawag.ch

Environmental Chemistry 13(3) 457-463 http://dx.doi.org/10.1071/EN15132
Submitted: 24 June 2015  Accepted: 18 September 2015   Published: 30 November 2015

Environmental context. Engineered copper nanoparticles are presently under development for various uses and may thus be finally released into the aquatic environment. Copper is well known to be both an essential and a toxic element for aquatic organisms. Here, we investigate the toxicity of copper nanoparticles to a green alga and compare it with the toxicity of dissolved copper.

Abstract. The toxicity of carbon-coated copper nanoparticles (CuNPs) to the unicellular green alga Chlamydomonas reinhardtii was investigated and compared with effects of dissolved Cu2+. The CuNPs with an original size of 6–7 nm rapidly agglomerated in the medium to average particle sizes of 140–200 nm. Dissolved Cu from CuNPs increased over 2 h to 1–2 % of total Cu. The photosynthetic yield of C. reinhardtii strongly decreased after exposure for 1 or 2 h to dissolved CuII in the concentration range 0.1–10 μM, whereas this decrease occurred in the total Cu concentration range 1–100 μM after exposure to CuNPs. Effects of CuNPs were compared with those of dissolved CuII on the basis of dissolution experiments. CuNP effects on photosynthetic yield were similar or somewhat stronger for the same dissolved Cu2+ concentration. Addition of EDTA as a strong ligand for CuII suppressed the toxicity of dissolved CuII and of CuNPs. These results thus indicate effects on the algae are mostly from free Cu2+.


References

[1]  B. Nowack, T. D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5.
Occurrence, behavior and effects of nanoparticles in the environment.CrossRef | 1:CAS:528:DC%2BD2sXhtF2mt7vJ&md5=ae29f6a198dd4bed1462903d23740273CAS | 17658673PubMed | open url image1

[2]  B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A. A. Koelmans, S. J. Klaine, Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 2012, 31, 50.
Potential scenarios for nanomaterial release and subsequent alteration in the environment.CrossRef | 1:CAS:528:DC%2BC3MXhs1yktr7M&md5=687c136c137b531bcb52bbf6c458ec45CAS | 22038832PubMed | open url image1

[3]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.CrossRef | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=db8b539a7b7c8782cda2e5885df35098CAS | 19086204PubMed | open url image1

[4]  K. C. Anyaogu, A. V. Fedorov, D. C. Neckers, Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 2008, 24, 4340.
Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles.CrossRef | 1:CAS:528:DC%2BD1cXjtlOju7g%3D&md5=91506f868f2a5a249f4c2c148c88d2c8CAS | 18341370PubMed | open url image1

[5]  N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P. G. Zambonin, E. Traversa, Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 2005, 17, 5255.
Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties.CrossRef | 1:CAS:528:DC%2BD2MXhtVWnurvL&md5=33e20ba8d92bf8d6429e07d59a296c3cCAS | open url image1

[6]  N. Odzak, D. Kistler, R. Behra, L. Sigg, Dissolution of metal and metal oxide nanoparticles in aqueous media. Environ. Pollut. 2014, 191, 132.
Dissolution of metal and metal oxide nanoparticles in aqueous media.CrossRef | 1:CAS:528:DC%2BC2cXpslKqsL8%3D&md5=3d7500cc099b1f1e9ce4ec33d4ff9aa7CAS | 24832924PubMed | open url image1

[7]  I. A. Mudunkotuwa, J. M. Pettibone, V. H. Grassian, Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ. Sci. Technol. 2012, 46, 7001.
Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials.CrossRef | 1:CAS:528:DC%2BC38XovFehsg%3D%3D&md5=37aead724dc2a301090ac8e824870a27CAS | 22280489PubMed | open url image1

[8]  W. Sunda, R. R. L. Guillard, The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res. 1976, 34, 511.
| 1:CAS:528:DyaE2sXjvVaqtA%3D%3D&md5=b1aac45dd2dc7e5e4633a80b59af77daCAS | open url image1

[9]  F. M. M. Morel, N. M. Price, The biogeochemical cycles of trace metals in the oceans. Science 2003, 300, 944.
The biogeochemical cycles of trace metals in the oceans.CrossRef | 1:CAS:528:DC%2BD3sXjsVyjsLk%3D&md5=c9e39d3fdfa28c650219e4b0f457a654CAS | open url image1

[10]  W. G. Sunda, S. A. Huntsman, Regulation of copper concentration in the oceanic nutricline by phytoplankton uptake and regeneration cycles. Limnol. Oceanogr. 1995, 40, 132.
Regulation of copper concentration in the oceanic nutricline by phytoplankton uptake and regeneration cycles.CrossRef | 1:CAS:528:DyaK2MXmtFaitbs%3D&md5=32b851111d2c6719e3e4b5674e252bddCAS | open url image1

[11]  E. Rue, K. W. Bruland, Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom Pseudo-nitzschia. Mar. Chem. 2001, 76, 127.
Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom Pseudo-nitzschia.CrossRef | 1:CAS:528:DC%2BD3MXntlKns7g%3D&md5=55597fc7ef3181436ebcfa66ceaf4514CAS | open url image1

[12]  P. L. Croot, B. Karlson, J. T. Van Elteren, J. J. Kroon, Uptake of 64Cu-oxine by marine phytoplankton. Environ. Sci. Technol. 1999, 33, 3615.
Uptake of 64Cu-oxine by marine phytoplankton.CrossRef | 1:CAS:528:DyaK1MXlslOms7c%3D&md5=b15038268cf2cab4bde1649472c0debbCAS | open url image1

[13]  K. Knauer, R. Behra, L. Sigg, Effects of free Cu2+ and Zn2+ on growth and metal accumulation in freshwater algae. Environ. Toxicol. Chem. 1997, 16, 220.
Effects of free Cu2+ and Zn2+ on growth and metal accumulation in freshwater algae.CrossRef | 1:CAS:528:DyaK2sXhsFahsbw%3D&md5=a8959e44d6454f7b65ed1678a13a8036CAS | open url image1

[14]  P. G. C. Campbell, O. Errécalde, C. Fortin, V. P. Hiriart-Baer, B. Vigneault, Metal bioavailability to phytoplankton – applicability of the biotic ligand model. Comp. Biochem. Physiol. C 2002, 133, 189. open url image1

[15]  A.-J. Miao, W.-X. Wang, P. Juneau, Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry. Environ. Toxicol. Chem. 2005, 24, 2603.
Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry.CrossRef | 1:CAS:528:DC%2BD2MXhtVKqt7bM&md5=b0cea26c2ffa858920dd693fd33b5c8eCAS | 16268163PubMed | open url image1

[16]  H. Küpper, I. Setlik, E. Setlikova, N. Ferimazova, M. Spiller, F. C. Kupper, Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct. Plant Biol. 2003, 30, 1187.
Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda.CrossRef | open url image1

[17]  C. Saison, F. Perreault, J.-C. Daigle, C. Fortin, J. Claverie, M. Morin, R. Popovic, Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat. Toxicol. 2010, 96, 109.
Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.CrossRef | 1:CAS:528:DC%2BC3cXhtValt7w%3D&md5=51c59222fb0231c730cf6730ee4b67ddCAS | 19883948PubMed | open url image1

[18]  Z. Wang, J. Li, J. Zhao, B. Xing, Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as Affected by dissolved organic matter. Environ. Sci. Technol. 2011, 45, 6032.
Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as Affected by dissolved organic matter.CrossRef | 1:CAS:528:DC%2BC3MXotVOns7w%3D&md5=c2a66347baa9f4fcb02345b6de6d1e1fCAS | 21671609PubMed | open url image1

[19]  L. Manusadžianas, C. Caillet, L. Fachetti, B. Gylyte, R. Grigutyte, S. Jurkoniene, R. Karitonas, K. Sadauskas, F. Thomas, R. Vitkus, J.-F. Ferard, Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ. Toxicol. Chem. 2012, 31, 108.
Toxicity of copper oxide nanoparticle suspensions to aquatic biota.CrossRef | 22020877PubMed | open url image1

[20]  F. Perreault, A. Oukarroum, S. P. Melegari, W. G. Matias, R. Popovic, Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 2012, 87, 1388.
Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.CrossRef | 1:CAS:528:DC%2BC38XkvVGksLs%3D&md5=7254e610ce6f83cdbe6cd4392bd1893aCAS | 22445953PubMed | open url image1

[21]  O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, A. Kahru, Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013, 87, 1181.
Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review.CrossRef | 1:CAS:528:DC%2BC3sXosFyqsbo%3D&md5=4e6f4a2168f79bb15343a1d4c2933412CAS | 23728526PubMed | open url image1

[22]  F. Perreault, M. Samadani, D. Dewez, Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 2014, 8, 374.
Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L.CrossRef | 1:CAS:528:DC%2BC3sXhvFemtLnP&md5=f74d53fefccab06b85db08b545eaec94CAS | 23521766PubMed | open url image1

[23]  V. Aruoja, H. C. Dubourguier, K. Kasemets, A. Kahru, Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009, 407, 1461.
Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.CrossRef | 1:CAS:528:DC%2BD1cXhsVOmsrvP&md5=42a41a4bac8c7f46db50240492642105CAS | 19038417PubMed | open url image1

[24]  L. Song, M. Connolly, M. L. Fernández-Cruz, M. G. Vijver, M. Fernández, E. Conde, G. R. de Snoo, W. J. G. M. Peijnenburg, J. M. Navas, Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 2014, 8, 383.
Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines.CrossRef | 1:CAS:528:DC%2BC3sXhvFemtLbP&md5=cbc1804665a5cd2cb6ab3aabede78fcbCAS | 23600739PubMed | open url image1

[25]  F. Piccapietra, C. Gil-Allué, L. Sigg, R. Behra, Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate-coated silver nanoparticles and silver nitrate. Environ. Sci. Technol. 2012, 46, 7390.
Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate-coated silver nanoparticles and silver nitrate.CrossRef | 1:CAS:528:DC%2BC38XnvF2ktrc%3D&md5=3678fdf489dcc8b89dbc71d3ea77801eCAS | 22667990PubMed | open url image1

[26]  E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959.
Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.CrossRef | 1:CAS:528:DC%2BD1cXhtFOqt7nO&md5=755432a47d7e3de51aa8c899bb99feb3CAS | 19192825PubMed | open url image1

[27]  K. Groh, T. Dalkvist, F. Piccapietra, R. Behra, M. Suter, K. Schirmer, Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Nanotoxicology 2015, 9, 81.
Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos.CrossRef | 1:CAS:528:DC%2BC2MXltFehsLY%3D&md5=b9fc0fd84c8c0b6507f534b732f650acCAS | 24625062PubMed | open url image1

[28]  X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, 1119.
Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.CrossRef | 1:CAS:528:DC%2BC3MXhsFygt7vN&md5=405a52bb51aca60821dd3899ce3aa76fCAS | 22148238PubMed | open url image1

[29]  Y. Yue, R. Behra, L. Sigg, P. Fernandez Freire, S. Pillai, K. Schirmer, Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 2015, 9, 54.
Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition.CrossRef | 1:CAS:528:DC%2BC2MXltFehs7k%3D&md5=949a3242412ff59292287388e360e7b6CAS | 24621324PubMed | open url image1

[30]  S. Pillai, R. Behra, H. Nestler, M. J. F. Suter, L. Sigg, K. Schirmer, Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc. Natl. Acad. Sci. USA 2014, 111, 3490.
Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver.CrossRef | 1:CAS:528:DC%2BC2cXjtlyrurY%3D&md5=fc5b731cd6a8df2ed2cfed43bc9c28dfCAS | 24550482PubMed | open url image1

[31]  S. Gass, J. M. Cohen, G. Pyrgiotakis, G. A. Sotiriou, S. E. Pratsinis, P. Demokritou, Safer formulation concept for flame-generated engineered nanomaterials. ACS Sustain. Chem.& Eng. 2013, 1, 843.
| 1:CAS:528:DC%2BC3sXltVCltL0%3D&md5=2f5834d881969d5866628a3f62338c07CAS | open url image1

[32]  M. L. Eggersdorfer, S. E. Pratsinis, Agglomerates and aggregates of nanoparticles made in the gas phase. Adv. Powder Technol. 2014, 25, 71.
Agglomerates and aggregates of nanoparticles made in the gas phase.CrossRef | 1:CAS:528:DC%2BC3sXhvVagtrzL&md5=e772d852a03a9a77d56ea57cb2f9b8e5CAS | open url image1

[33]  S. Le Faucheur, R. Behra, L. Sigg, Phytochelatin induction, cadmium accumulation and algal sensitivity to free cadmium ions in Scenedesmus vacuolatus. Environ. Toxicol. Chem. 2005, 24, 1731.
Phytochelatin induction, cadmium accumulation and algal sensitivity to free cadmium ions in Scenedesmus vacuolatus.CrossRef | 1:CAS:528:DC%2BD2MXlslWrsrs%3D&md5=5d74a14b0d0eb0f5beff15c7e842ba28CAS | 16050590PubMed | open url image1

[34]  E. Navarro, A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi, L. Sigg, Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 2008, 17, 372.
Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi.CrossRef | 1:CAS:528:DC%2BD1cXmsVKrsLc%3D&md5=bd0c43cd3b40073839874f44ea37a2a8CAS | 18461442PubMed | open url image1

[35]  C. Nickel, J. Angelstorf, R. Bienert, C. Burkart, S. Gabsch, S. Giebner, A. Haase, B. Hellack, H. Hollert, K. Hund-Rinke, D. Jungmann, H. Kaminski, A. Luch, H. Maes, A. Nogowski, M. Oetken, A. Schaeffer, A. Schiwy, K. Schlich, M. Stintz, F. von der Kammer, T. J. Kuhlbusch, Dynamic light-scattering measurement comparability of nanomaterial suspensions. J. Nanopart. Res. 2014, 16, 2260.
Dynamic light-scattering measurement comparability of nanomaterial suspensions.CrossRef | open url image1

[36]  N. Odzak, D. Kistler, R. Behra, L. Sigg, Dissolution of metal and metal oxide nanoparticles under natural freshwater conditions. Environ. Chem. 2015, 12, 138.
Dissolution of metal and metal oxide nanoparticles under natural freshwater conditions.CrossRef | 1:CAS:528:DC%2BC2MXltVWmsr0%3D&md5=58809246df1b22f3b5f17b17057c0e16CAS | open url image1

[37]  F. Schwab, T. D. Bucheli, L. P. Lukhele, A. Magrez, B. Nowack, L. Sigg, K. Knauer, Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ. Sci. Technol. 2011, 45, 6136.
Are carbon nanotube effects on green algae caused by shading and agglomeration?CrossRef | 1:CAS:528:DC%2BC3MXnvF2js7s%3D&md5=0ba2c2848739dec0710edf1612448bfdCAS | 21702508PubMed | open url image1

[38]  E. Navarro, B. Wagner, N. Odzak, L. Sigg, R. Behra, Effects of differently coated silver nanoparticles on photosynthesis in Chlamydomonas reinhardtii. Environ. Sci. Technol. 2015, 49, 8041.
Effects of differently coated silver nanoparticles on photosynthesis in Chlamydomonas reinhardtii.CrossRef | 1:CAS:528:DC%2BC2MXovF2qs7w%3D&md5=add0735c0b0d5cf681c7c34ac4126d09CAS | 26018638PubMed | open url image1

[39]  M. Vaara, Agents that increase the permeability of the outer membrane. Microbiol. Rev. 1992, 56, 395.
| 1:CAS:528:DyaK3sXjsFCktQ%3D%3D&md5=8800c04f01e8ef6d08b4a34250fd0b7fCAS | 1406489PubMed | open url image1

[40]  C. S. Hassler, V. I. Slaveykova, K. J. Wilkinson, Discriminating between intra- and extracellular metals using chemical extractions. Limnol. Oceanogr. Methods 2004, 2, 237.
Discriminating between intra- and extracellular metals using chemical extractions.CrossRef | open url image1

[41]  L. Sigg, Metals as water quality parameters – role of speciation and bioavailability, in Comprehensive Water Quality and Purification (Ed. S. Ahuja) 2014, pp. 315–329 (Elsevier: Oxford, UK).



Supplementary MaterialSupplementary Material (597 KB) Export Citation