Interactions of hydrophobic metal complexes and their constituents with aquatic humic substances

Amiel Boullemant, Jean-Pierre Gagné, Claude Fortin and Peter G.C. Campbell

Supplementary Material

Fluorescence intensity data Derivation of the complexation constants for $Cd(DDC)_n$ *and* $Cd(XANT)_n$ *complexes* Fluorescence intensity data

Table A1. Variations in peak intensities during the titration of SRHA and SRFA with Cd at pH 7.0 ([Cd1] = 0.1 nM; [Cd2] = 1.0 nM; [Cd3] = 10 nM; [Cd4] = 0.1 μ M; [Cd5] = 1.0 μ M; [Cd6] = 10 μ M). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 245/435; Area C = 295/430. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 250/435; Area B = 280/438; Area C = 335/460

Titration pH 7.0	AREA A	= 335/460 AREA B	AREA C
SRHA alone	1727.1		1551.3
SRHA + Cd1	1808.4		1850
SRHA + Cd2	1879.4		2026.6
SRHA + Cd3	1954.6	Not present	2094.6
SRHA + Cd4	2045.7		2136.5
SRHA + Cd5	2159.6		2110.5
SRHA + Cd6	2187.3		2185.3
SRFA alone	1890.4	1120.7	894.4
SRFA + Cd1	2395.9	1366.1	865.6
SRFA + Cd2	2813.4	1603.3	869.7
SRFA + Cd3	3086.2	1765.4	859
SRFA + Cd4	3200.1	1866	850.4
SRFA + Cd5	3612.4	2030	893.9
SRFA + Cd6	3650.8	2083.3	866.2

Table A2. Variations in peak intensities during the titration of SRHA or SRFA with Cd at pH 5.5 ([Cd1] = 0.1 nM; [Cd2] = 1.0 nM; [Cd3] = 10 nM; [Cd4] = 0.1 μ M; [Cd5] = 1.0 μ M; [Cd6] = 10 μ M). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 250/441; Area C = 320/442. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 255/465; Area B = 295/454; Area C = 325/458

Titration pH 5.5	AREA A	= 525/456 AREA B	AREA C
SRHA alone	1291.2		1114.5
SRHA + Cd1	1310.1		1123.3
SRHA + Cd2	1366.9		1116.2
SRHA + Cd3	1530.6	Not present	1124.2
SRHA + Cd4	1489		1147
SRHA + Cd5	1625.4		1130.7
SRHA + Cd6	1700		1151.2
SRFA alone	1160.4	696.4	906.2
SRFA + Cd1	1172.1	709.1	904.1
SRFA + Cd2	1222.7	751.1	890.7
SRFA + Cd3	1297.7	765.4	900.9
SRFA + Cd4	1345.6	793.5	890.4
SRFA + Cd5	1401.8	832.2	879
SRFA + Cd6	1394.3	867.9	885.5

Table A3. Variations in peak intensities during the titration of mixtures of DDC and SRHA or SRFA with Cd at pH 7.0 ([Cd1] = 0.38 nM; [Cd2] = 2.4 nM; [Cd3] = 12 nM; [Cd4] = 62 nM; [Cd5] = 162 nM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 245/430; Area B = 280/427; Area C = 315/443. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 245/437; Area B = 280/439; Area C = 330/458

Titration pH 7.0	AREA A	AREA B	AREA C
SRHA alone	2771.8	1604.3	1279.7
SRHA + DDC	3137	1738.1	1266.4
SRHA + DDC + Cd1	3398.5	1913.7	1242.4
SRHA + DDC + Cd2	3829.3	2142.1	1268.4
SRHA + DDC + Cd3	3950	2240	1260
SRHA + DDC + Cd4	4113.9	2345.9	1255.3
SRHA + DDC + Cd5	4485.6	2490.4	1249.2
SRFA alone	1615.3	1011.3	1031.1
SRFA + DDC	2230.3	1279.6	985
SRFA + DDC + Cd1	2689.7	1520.6	1009.1
SRFA + DDC + Cd2	3082	1691.6	1015.8
SRFA + DDC + Cd3	3406.3	1866.9	1005.9
SRFA + DDC + Cd4	3596.3	2003.6	1025
SRFA + DDC + Cd5	4382.7	2399.1	1034.4

Table A4. Variations in peak intensities during the titration of mixtures of DDC and SRHA or SRFA with Cd at pH 5.5 ([Cd1] = 0.38 nM; [Cd2] = 2.4 nM; [Cd3] = 12 nM; [Cd4] = 62 nM; [Cd5] = 162 nM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 255/462; Area C = 315/447. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 250/443; Area B = 280/434; Area C = 330/461

Titration pH 5.5	AREA A	AREA B	AREA C
SRHA alone	1392		1204.3
SRHA + DDC	1359.4		1181.9
SRHA + DDC + Cd1	1407		1183.6
SRHA + DDC + Cd2	1461.1	Not present	1173.1
SRHA + DDC + Cd3	1517.7		1172.9
SRHA + DDC + Cd4	1562.4		1202.9
SRHA + DDC + Cd5	1564		1200
SRFA alone	1384	837.3	953.8
SRFA + DDC	1525.7	925.7	934.6
SRFA + DDC + Cd1	1691.7	1047.8	958.7
SRFA + DDC + Cd2	1858.5	1155.2	914.3
SRFA + DDC + Cd3	1966.6	1281.7	921.3
SRFA + DDC + Cd4	2207.6	1387.2	915
SRFA + DDC + Cd5	2300.5	1528.1	917.5

Titration pH 7.0	Area C =	AREA B	AREA C
SRHA alone	1637.8		1252.6
SRHA + XANT	1530.6		754.2
SRHA + XANT + Cd1	1650.4		755.9
SRHA + XANT + Cd2	1717.8	Not present	752.9
SRHA + XANT + Cd3	1993.4		783.7
SRHA + XANT + Cd4	2027.1		767.9
SRHA + XANT + Cd5	2066.7		779.4
SRFA alone	1365.9		1029.5
SRFA + XANT	1203.6		932.3
SRFA + XANT + Cd1	1326.3		921.3
SRFA + XANT + Cd2	1283.6	Not present	937.5
SRFA + XANT + Cd3	1339		956.1
SRFA + XANT + Cd4	1439.5		923.8
SRFA + XANT + Cd5	1442.2		928.8

Table A5. Variations in peak intensities during the titration of mixtures of XANT and SRHA or SRFA with Cd at pH 7.0 ([Cd1] = 0.38 nM; [Cd2] = 2.4 nM; [Cd3] = 12 nM; [Cd4] = 62 nM; [Cd5] = 162 nM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 250/444; Area C = 315/444. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 250/456; Area C = 325/451

Titration pH 5.5	Area C =	AREA B	AREA C
	AKLA A	AREA D	AREA C
SRHA alone	1398.2		1198.1
SRHA + XANT	1304.7		765.1
SRHA + XANT + Cd1	1358.1		771.7
SRHA + XANT + Cd2	1433.8	Not present	784
SRHA + XANT + Cd3	1507		781.8
SRHA + XANT + Cd4	1517.1		808
SRHA + XANT + Cd5	1556.6		787.4
SRFA alone	1037.8		928
SRFA + XANT	945.9		900.7
SRFA + XANT + Cd1	943.9		874.2
SRFA + XANT + Cd2	996.5	Not present	880.4
SRFA + XANT + Cd3	1005		859.6
SRFA + XANT + Cd4	1006.2		849.2
SRFA + XANT + Cd5	1017.3		854.6

Table A6. Variations in peak intensities during the titration of mixtures of XANT and SRHA or SRFA with Cd at pH 5.5 ([Cd1] = 0.38 nM; [Cd2] = 2.4 nM; [Cd3] = 12 nM; [Cd4] = 62 nM; [Cd5] = 162 nM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 255/466; Area C = 315/440. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 255/482; Area C = 330/452

Thermodynamic stability constants for Cd(DDC)_n and Cd(XANT)_n complexes

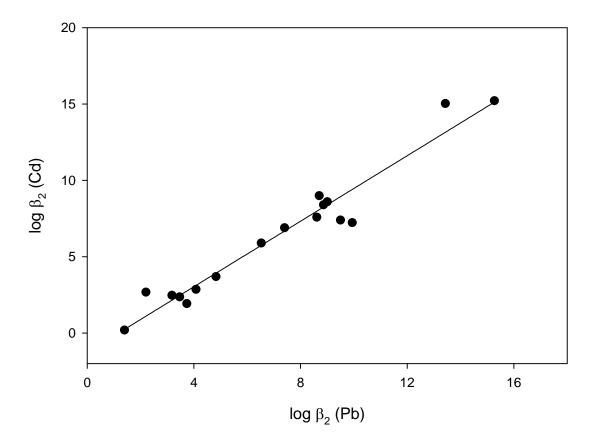
To perform speciation calculations for cadmium in the various exposure media, one needs the following thermodynamic stability constants:

$$\log K_1 \operatorname{Cd}^{2+} + \operatorname{L}^- \leftrightarrow \operatorname{CdL}^+$$
$$\log K_2 \operatorname{CdL}^+ + \operatorname{L}^- \leftrightarrow \operatorname{CdL}_2^0$$
$$\log \beta_2 \operatorname{Cd}^{2+} + 2\operatorname{L}^- \leftrightarrow \operatorname{CdL}_2^0$$
$$\log \beta_2 = \log K_1 + \log K_2$$

where L = diethyldithiocarbamate (DDC) or ethylxanthate (XANT). To take into account the pH of the solutions, one also needs the corresponding acidity constants:

 $\log K_{a1} H^{+} + L^{-} \leftrightarrow HL$ $\log K_{a2} HL + H^{+} \leftrightarrow H_{2}L^{+}$ $\log \beta_{a2} 2H^{+} + L^{-} \leftrightarrow H_{2}L^{+}$ $\log \beta_{a2} = \log K_{a1} + \log K_{a2}$

For the Cd/DDC and Cd/XANT systems, many of the primary thermodynamic data needed for speciation calculations are missing. Where possible, we used the Irving-Rossotti approach to estimate the missing complexation constants.^[1]


Diethyldithiocarbamate

For the protonation of DDC, we chose a pK_a value of 3.38, this value having been reported for two studies carried out in aqueous media.^[2,3] No log K₁ values are available for the Cd-DDC system in aqueous solution; the value measured in methanol and dimethylsulfoxide $(8.3)^{[4]}$ was adjusted to 8.0 as a conservative estimate. A log β_2 value of 17.44 was estimated from a regression of log β_2 (Cd) ν . log β_2 (Pb) for a variety of organic ligands for which reliable constants were available:^[5,6] log β_2 (Cd) = (1.07 ± 0.06) $\cdot \log \beta_2$ (Pb) – (1.26 ± 0.52), r² = 0.95, N=17. For the Pb-DDC₂ complex, the IUPAC database gives two log β_2 values, the average of which is 18.45 ± 0.12 . Introducing this value into the linear regression yields a log β_2 value of 18.54 ± 1.10 for the Cd-DDC2 complex; for our calculations we chose a value of 17.44, i.e., the most unfavourable case (18.54 minus 1.10, the latter term being the standard error).

Ethylxanthate

For the protonation of XANT, we could only find a single value, $pK_a = 2.20$, obtained in a 1:1 mixture of water and dimethylformamide;^[7] in the absence of any other data, this value was used. To estimate the log

 β_2 value for the Cd(XANT)₂ complex, we again used the Irving-Rossotti approach with the Cd-Pb pairing. However, data for XANT are scarce and we had to use a the literature constant of the Pb complex with butyl-ethylxanthate, i.e., a ligand with one alkyl chain containing two additional -CH₂- units. According to the IUPAC database, the log β_2 value for the Pb(butylethylxanthate)₂ complex is 13.29. Introducing this value into the linear regression yields a log β_2 value of 13.0 ± 0.81 for the Cd(butylxanthate)₂ complex. To account for the two extra alkyl groups, we reduced this value by two log units and used a conservative estimate of log β_2 (Cd(XANT)₂) = 11.0. The log K₁ value for Cd-XANT was estimated from the relation $\beta_2 = K_1^{2}$.^[8]

Fig. A1. Regression of log β_2 (Pb) against log β_2 (Cd) for a variety of organic ligands (I = 0; T = 298 K).

References

- H. Irving, H. Rossotti, Some Relationships Among the Stabilities of Metal Complexes, *Acta Chem. Scand.* 1956, 10, 72.
- [2] K. Hayashi, Y. Sasaki, S. Tagashira, T. Yanagidani, Acid Dissociation Constants of Dialkyldithiocarbamic Acids and O, O' Dialkyl S-Hydrogen Dithiophosphates and Formation Constants of Their Complexes With Cadmium (II), Zinc (II) and Lead (II) in 1:1 V/v Water-DME Medium. *Bull. Chem. Soc. Jpn.* **1986**, *59*, 1255. doi:10.1246/bcsj.59.1255
- [3] R. R. Scharfe, V. S. Sastri, C. L. Chakrabarti, Stability of Metal Dithiocarbamate Complexes, *Anal. Chem.* 1973, 45, 413. doi:10.1021/ac60324a005
- [4] J. Labuda, M. Skatulokova, M. Nmeth, S. Gergely, Formation and Stability of Diethyldithiocarbamate Complexes. *Chem. Zvesti* 1984, 38, 597.
- [5] NIST Critically Selected Stability Constants of Metal Complexes v. 8.0. 2004. (National Institute of Standards and Technology: Gaithersburg, MD, USA).
- [6] IUPAC Stability Constants Database. 2001. (Academic Software: Otley, Yorkshire, UK).
- [7] K. Hayashi, Y. Sasaki, S. Inomata, T. Yanagidani, Acid Dissociation-Constants of Alkyl Xanthic Acids and Formation-Constants of Cadmium(II) and Zinc(II) Xanthato Complexes in 1-1 V/v H₂O-DMF Medium. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 3074. doi:10.1246/bcsj.57.3074
- [8] M. Block, Distribution of Cadmium in an Octanol Water-System in the Presence of Xanthates and Diethyldithiocarbamate, *Environ. Toxicol. Chem.* 1991, *10*, 1267. doi:10.1897/1552-8618(1991)10[1267:DOCIAW]2.0.CO;2