Interactions of hydrophobic metal complexes and their constituents with aquatic humic substances

Amiel Boullemant, Jean-Pierre Gagné, Claude Fortin and Peter G.C. Campbell

Supplementary Material

Fluorescence intensity data

Derivation of the complexation constants for $\text{Cd}(\text{DDC})_n$ and $\text{Cd}(\text{XANT})_n$ complexes
Fluorescence intensity data

Table A1. Variations in peak intensities during the titration of SRHA and SRFA with Cd at pH 7.0 ([Cd1] = 0.1 nM; [Cd2] = 1.0 nM; [Cd3] = 10 nM; [Cd4] = 0.1 µM; [Cd5] = 1.0 µM; [Cd6] = 10 µM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 245/435; Area C = 295/430. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 250/435; Area B = 280/438; Area C = 335/460

<table>
<thead>
<tr>
<th>Titration pH 7.0</th>
<th>AREA A</th>
<th>AREA B</th>
<th>AREA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRHA alone</td>
<td>1727.1</td>
<td></td>
<td>1551.3</td>
</tr>
<tr>
<td>SRHA + Cd1</td>
<td>1808.4</td>
<td>1850</td>
<td></td>
</tr>
<tr>
<td>SRHA + Cd2</td>
<td>1879.4</td>
<td>2026.6</td>
<td></td>
</tr>
<tr>
<td>SRHA + Cd3</td>
<td>1954.6</td>
<td>Not present</td>
<td>2094.6</td>
</tr>
<tr>
<td>SRHA + Cd4</td>
<td>2045.7</td>
<td>2136.5</td>
<td></td>
</tr>
<tr>
<td>SRHA + Cd5</td>
<td>2159.6</td>
<td>2110.5</td>
<td></td>
</tr>
<tr>
<td>SRHA + Cd6</td>
<td>2187.3</td>
<td></td>
<td>2185.3</td>
</tr>
</tbody>
</table>

SRFA alone	1890.4	1120.7	894.4
SRFA + Cd1	2395.9	1366.1	865.6
SRFA + Cd2	2813.4	1603.3	869.7
SRFA + Cd3	3086.2	1765.4	859
SRFA + Cd4	3200.1	1866	850.4
SRFA + Cd5	3612.4	2030	893.9
SRFA + Cd6	3650.8	2083.3	866.2
Table A2. Variations in peak intensities during the titration of SRHA or SRFA with Cd at pH 5.5 ([Cd1] = 0.1 nM; [Cd2] = 1.0 nM; [Cd3] = 10 nM; [Cd4] = 0.1 µM; [Cd5] = 1.0 µM; [Cd6] = 10 µM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 250/441; Area C = 320/442. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 255/465; Area B = 295/454; Area C = 325/458.

<table>
<thead>
<tr>
<th>Titration pH 5.5</th>
<th>AREA A</th>
<th>AREA B</th>
<th>AREA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRHA alone</td>
<td>1291.2</td>
<td></td>
<td>1114.5</td>
</tr>
<tr>
<td>SRHA + Cd1</td>
<td>1310.1</td>
<td></td>
<td>1123.3</td>
</tr>
<tr>
<td>SRHA + Cd2</td>
<td>1366.9</td>
<td></td>
<td>1116.2</td>
</tr>
<tr>
<td>SRHA + Cd3</td>
<td>1530.6</td>
<td>Not present</td>
<td>1124.2</td>
</tr>
<tr>
<td>SRHA + Cd4</td>
<td>1489</td>
<td></td>
<td>1147</td>
</tr>
<tr>
<td>SRHA + Cd5</td>
<td>1625.4</td>
<td></td>
<td>1130.7</td>
</tr>
<tr>
<td>SRHA + Cd6</td>
<td>1700</td>
<td></td>
<td>1151.2</td>
</tr>
<tr>
<td>SRFA alone</td>
<td>1160.4</td>
<td>696.4</td>
<td>906.2</td>
</tr>
<tr>
<td>SRFA + Cd1</td>
<td>1172.1</td>
<td>709.1</td>
<td>904.1</td>
</tr>
<tr>
<td>SRFA + Cd2</td>
<td>1222.7</td>
<td>751.1</td>
<td>890.7</td>
</tr>
<tr>
<td>SRFA + Cd3</td>
<td>1297.7</td>
<td>765.4</td>
<td>900.9</td>
</tr>
<tr>
<td>SRFA + Cd4</td>
<td>1345.6</td>
<td>793.5</td>
<td>890.4</td>
</tr>
<tr>
<td>SRFA + Cd5</td>
<td>1401.8</td>
<td>832.2</td>
<td>879</td>
</tr>
<tr>
<td>SRFA + Cd6</td>
<td>1394.3</td>
<td>867.9</td>
<td>885.5</td>
</tr>
</tbody>
</table>
Table A3. Variations in peak intensities during the titration of mixtures of DDC and SRHA or SRFA with Cd at pH 7.0 ([Cd1] = 0.38 nM; [Cd2] = 2.4 nM; [Cd3] = 12 nM; [Cd4] = 62 nM; [Cd5] = 162 nM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 245/430; Area B = 280/427; Area C = 315/443. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 245/437; Area B = 280/439; Area C = 330/458.

<table>
<thead>
<tr>
<th>Titration pH 7.0</th>
<th>AREA A</th>
<th>AREA B</th>
<th>AREA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRHA alone</td>
<td>2771.8</td>
<td>1604.3</td>
<td>1279.7</td>
</tr>
<tr>
<td>SRHA + DDC</td>
<td>3137</td>
<td>1738.1</td>
<td>1266.4</td>
</tr>
<tr>
<td>SRHA + DDC + Cd1</td>
<td>3398.5</td>
<td>1913.7</td>
<td>1242.4</td>
</tr>
<tr>
<td>SRHA + DDC + Cd2</td>
<td>3829.3</td>
<td>2142.1</td>
<td>1268.4</td>
</tr>
<tr>
<td>SRHA + DDC + Cd3</td>
<td>3950</td>
<td>2240</td>
<td>1260</td>
</tr>
<tr>
<td>SRHA + DDC + Cd4</td>
<td>4113.9</td>
<td>2345.9</td>
<td>1255.3</td>
</tr>
<tr>
<td>SRHA + DDC + Cd5</td>
<td>4485.6</td>
<td>2490.4</td>
<td>1249.2</td>
</tr>
<tr>
<td>SRFA alone</td>
<td>1615.3</td>
<td>1011.3</td>
<td>1031.1</td>
</tr>
<tr>
<td>SRFA + DDC</td>
<td>2230.3</td>
<td>1279.6</td>
<td>985</td>
</tr>
<tr>
<td>SRFA + DDC + Cd1</td>
<td>2689.7</td>
<td>1520.6</td>
<td>1009.1</td>
</tr>
<tr>
<td>SRFA + DDC + Cd2</td>
<td>3082</td>
<td>1691.6</td>
<td>1015.8</td>
</tr>
<tr>
<td>SRFA + DDC + Cd3</td>
<td>3406.3</td>
<td>1866.9</td>
<td>1005.9</td>
</tr>
<tr>
<td>SRFA + DDC + Cd4</td>
<td>3596.3</td>
<td>2003.6</td>
<td>1025</td>
</tr>
<tr>
<td>SRFA + DDC + Cd5</td>
<td>4382.7</td>
<td>2399.1</td>
<td>1034.4</td>
</tr>
</tbody>
</table>
Table A4. Variations in peak intensities during the titration of mixtures of DDC and SRHA or SRFA with Cd at pH 5.5 ([Cd1] = 0.38 nM; [Cd2] = 2.4 nM; [Cd3] = 12 nM; [Cd4] = 62 nM; [Cd5] = 162 nM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 255/462; Area C = 315/447. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 250/443; Area B = 280/434; Area C = 330/461

<table>
<thead>
<tr>
<th>Titration pH 5.5</th>
<th>AREA A</th>
<th>AREA B</th>
<th>AREA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRHA alone</td>
<td>1392</td>
<td></td>
<td>1204.3</td>
</tr>
<tr>
<td>SRHA + DDC</td>
<td>1359.4</td>
<td></td>
<td>1181.9</td>
</tr>
<tr>
<td>SRHA + DDC + Cd1</td>
<td>1407</td>
<td></td>
<td>1183.6</td>
</tr>
<tr>
<td>SRHA + DDC + Cd2</td>
<td>1461.1</td>
<td>Not present</td>
<td>1173.1</td>
</tr>
<tr>
<td>SRHA + DDC + Cd3</td>
<td>1517.7</td>
<td></td>
<td>1172.9</td>
</tr>
<tr>
<td>SRHA + DDC + Cd4</td>
<td>1562.4</td>
<td></td>
<td>1202.9</td>
</tr>
<tr>
<td>SRHA + DDC + Cd5</td>
<td>1564</td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td>SRFA alone</td>
<td>1384</td>
<td>837.3</td>
<td>953.8</td>
</tr>
<tr>
<td>SRFA + DDC</td>
<td>1525.7</td>
<td>925.7</td>
<td>934.6</td>
</tr>
<tr>
<td>SRFA + DDC + Cd1</td>
<td>1691.7</td>
<td>1047.8</td>
<td>958.7</td>
</tr>
<tr>
<td>SRFA + DDC + Cd2</td>
<td>1858.5</td>
<td>1155.2</td>
<td>914.3</td>
</tr>
<tr>
<td>SRFA + DDC + Cd3</td>
<td>1966.6</td>
<td>1281.7</td>
<td>921.3</td>
</tr>
<tr>
<td>SRFA + DDC + Cd4</td>
<td>2207.6</td>
<td>1387.2</td>
<td>915</td>
</tr>
<tr>
<td>SRFA + DDC + Cd5</td>
<td>2300.5</td>
<td>1528.1</td>
<td>917.5</td>
</tr>
</tbody>
</table>
Table A5. Variations in peak intensities during the titration of mixtures of XANT and SRHA or SRFA with Cd at pH 7.0 ([Cd1] = 0.38 nM; [Cd2] = 2.4 nM; [Cd3] = 12 nM; [Cd4] = 62 nM; [Cd5] = 162 nM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 250/444; Area C = 315/444. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 250/456; Area C = 325/451

<table>
<thead>
<tr>
<th>Titration pH 7.0</th>
<th>AREA A</th>
<th>AREA B</th>
<th>AREA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRHA alone</td>
<td>1637.8</td>
<td></td>
<td>1252.6</td>
</tr>
<tr>
<td>SRHA + XANT</td>
<td>1530.6</td>
<td></td>
<td>754.2</td>
</tr>
<tr>
<td>SRHA + XANT + Cd1</td>
<td>1650.4</td>
<td></td>
<td>755.9</td>
</tr>
<tr>
<td>SRHA + XANT + Cd2</td>
<td>1717.8</td>
<td>Not present</td>
<td>752.9</td>
</tr>
<tr>
<td>SRHA + XANT + Cd3</td>
<td>1993.4</td>
<td></td>
<td>783.7</td>
</tr>
<tr>
<td>SRHA + XANT + Cd4</td>
<td>2027.1</td>
<td></td>
<td>767.9</td>
</tr>
<tr>
<td>SRHA + XANT + Cd5</td>
<td>2066.7</td>
<td></td>
<td>779.4</td>
</tr>
<tr>
<td>SRFA alone</td>
<td>1365.9</td>
<td></td>
<td>1029.5</td>
</tr>
<tr>
<td>SRFA + XANT</td>
<td>1203.6</td>
<td></td>
<td>932.3</td>
</tr>
<tr>
<td>SRFA + XANT + Cd1</td>
<td>1326.3</td>
<td></td>
<td>921.3</td>
</tr>
<tr>
<td>SRFA + XANT + Cd2</td>
<td>1283.6</td>
<td>Not present</td>
<td>937.5</td>
</tr>
<tr>
<td>SRFA + XANT + Cd3</td>
<td>1339</td>
<td></td>
<td>956.1</td>
</tr>
<tr>
<td>SRFA + XANT + Cd4</td>
<td>1439.5</td>
<td></td>
<td>923.8</td>
</tr>
<tr>
<td>SRFA + XANT + Cd5</td>
<td>1442.2</td>
<td></td>
<td>928.8</td>
</tr>
</tbody>
</table>
Table A6. Variations in peak intensities during the titration of mixtures of XANT and SRHA or SRFA with Cd at pH 5.5 ([Cd1] = 0.38 nM; [Cd2] = 2.4 nM; [Cd3] = 12 nM; [Cd4] = 62 nM; [Cd5] = 162 nM). For SRHA wavelength pairs are in nm (excitation/emission): Area A = 255/466; Area C = 315/440. For SRFA wavelength pairs are in nm (excitation/emission): Area A = 255/482; Area C = 330/452.

<table>
<thead>
<tr>
<th>Titration pH 5.5</th>
<th>AREA A</th>
<th>AREA B</th>
<th>AREA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRHA alone</td>
<td>1398.2</td>
<td></td>
<td>1198.1</td>
</tr>
<tr>
<td>SRHA + XANT</td>
<td>1304.7</td>
<td></td>
<td>765.1</td>
</tr>
<tr>
<td>SRHA + XANT + Cd1</td>
<td>1358.1</td>
<td></td>
<td>771.7</td>
</tr>
<tr>
<td>SRHA + XANT + Cd2</td>
<td>1433.8</td>
<td></td>
<td>784</td>
</tr>
<tr>
<td>SRHA + XANT + Cd3</td>
<td>1507</td>
<td></td>
<td>781.8</td>
</tr>
<tr>
<td>SRHA + XANT + Cd4</td>
<td>1517.1</td>
<td></td>
<td>808</td>
</tr>
<tr>
<td>SRHA + XANT + Cd5</td>
<td>1556.6</td>
<td></td>
<td>787.4</td>
</tr>
<tr>
<td>SRFA alone</td>
<td>1037.8</td>
<td></td>
<td>928</td>
</tr>
<tr>
<td>SRFA + XANT</td>
<td>945.9</td>
<td></td>
<td>900.7</td>
</tr>
<tr>
<td>SRFA + XANT + Cd1</td>
<td>943.9</td>
<td></td>
<td>874.2</td>
</tr>
<tr>
<td>SRFA + XANT + Cd2</td>
<td>996.5</td>
<td></td>
<td>880.4</td>
</tr>
<tr>
<td>SRFA + XANT + Cd3</td>
<td>1005</td>
<td></td>
<td>859.6</td>
</tr>
<tr>
<td>SRFA + XANT + Cd4</td>
<td>1006.2</td>
<td></td>
<td>849.2</td>
</tr>
<tr>
<td>SRFA + XANT + Cd5</td>
<td>1017.3</td>
<td></td>
<td>854.6</td>
</tr>
</tbody>
</table>
Thermodynamic stability constants for Cd(DDC)\textsubscript{n} and Cd(XANT)\textsubscript{n} complexes

To perform speciation calculations for cadmium in the various exposure media, one needs the following thermodynamic stability constants:

\[
\begin{align*}
\log K_1 & \quad \text{Cd}^{2+} + \text{L}^{-} \leftrightarrow \text{CdL}^{+} \\
\log K_2 & \quad \text{CdL}^{+} + \text{L}^{-} \leftrightarrow \text{CdL}_2^0 \\
\log \beta_2 & \quad \text{Cd}^{2+} + 2\text{L}^{-} \leftrightarrow \text{CdL}_2^0 \\
\log \beta_2 & = \log K_1 + \log K_2
\end{align*}
\]

where L = diethyldithiocarbamate (DDC) or ethylxanthate (XANT). To take into account the pH of the solutions, one also needs the corresponding acidity constants:

\[
\begin{align*}
\log K_{a1} & \quad \text{H}^+ + \text{L}^{-} \leftrightarrow \text{HL} \\
\log K_{a2} & \quad \text{HL} + \text{H}^+ \leftrightarrow \text{H}_2\text{L}^+ \\
\log \beta_{a2} & \quad 2\text{H}^+ + \text{L}^{-} \leftrightarrow \text{H}_2\text{L}^+ \\
\log \beta_{a2} & = \log K_{a1} + \log K_{a2}
\end{align*}
\]

For the Cd/DDC and Cd/XANT systems, many of the primary thermodynamic data needed for speciation calculations are missing. Where possible, we used the Irving-Rossotti approach to estimate the missing complexation constants.\cite{1}

Diethyldithiocarbamate

For the protonation of DDC, we chose a pK\textsubscript{a} value of 3.38, this value having been reported for two studies carried out in aqueous media.\cite{2,3} No log K\textsubscript{1} values are available for the Cd-DDC system in aqueous solution; the value measured in methanol and dimethylsulfoxide (8.3)\cite{4} was adjusted to 8.0 as a conservative estimate. A log \beta_2 value of 17.44 was estimated from a regression of log \beta_2 (Cd) v. log \beta_2 (Pb) for a variety of organic ligands for which reliable constants were available:\cite{5,6} log \beta_2 (Cd) = (1.07 ± 0.06) \cdot \log \beta_2 (Pb) – (1.26 ± 0.52), r2 = 0.95, N=17. For the Pb-DDC\textsubscript{2} complex, the IUPAC database gives two log \beta_2 values, the average of which is 18.45 ± 0.12. Introducing this value into the linear regression yields a log \beta_2 value of 18.54 ± 1.10 for the Cd-DDC\textsubscript{2} complex; for our calculations we chose a value of 17.44, i.e., the most unfavourable case (18.54 minus 1.10, the latter term being the standard error).

Ethylxanthate

For the protonation of XANT, we could only find a single value, pK\textsubscript{a} = 2.20, obtained in a 1:1 mixture of water and dimethylformamide;\cite{7} in the absence of any other data, this value was used. To estimate the log
\(\beta_2 \) value for the \(\text{Cd(XANT)}_2 \) complex, we again used the Irving-Rossotti approach with the Cd-Pb pairing. However, data for XANT are scarce and we had to use a the literature constant of the Pb complex with butyl-ethylxanthate, i.e., a ligand with one alkyl chain containing two additional -CH\(_2\)- units. According to the IUPAC database, the log \(\beta_2 \) value for the \(\text{Pb(butylethylxanthate)}_2 \) complex is 13.29. Introducing this value into the linear regression yields a log \(\beta_2 \) value of 13.0 ± 0.81 for the \(\text{Cd(butylxanthate)}_2 \) complex. To account for the two extra alkyl groups, we reduced this value by two log units and used a conservative estimate of log \(\beta_2 \) (\(\text{Cd(XANT)}_2 \)) = 11.0. The log \(K_1 \) value for Cd-XANT was estimated from the relation \(\beta_2 = K_1^2 \).\(^8\)

![Regression of log \(\beta_2 \) (Pb) against log \(\beta_2 \) (Cd) for a variety of organic ligands (I = 0; T = 298 K).](image_url)

Fig. A1. Regression of log \(\beta_2 \) (Pb) against log \(\beta_2 \) (Cd) for a variety of organic ligands (I = 0; T = 298 K).
References

