Accessory publication

Impact of pH on CdII partitioning between alginate gel and aqueous media

Erwin J. J. Kalis,A Thomas A. Davis,B Raewyn M. TownC,D and Herman P. van LeeuwenA

ALaboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, the Netherlands.

BDepartment of Chemistry, University of Montreal, Succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada.

CInstitute for Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.

DCorresponding author. Email: rmt@ifk.sdu.dk

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figA1.png}
\caption{Schematic representation of the information obtained from the diffusion-limited steady-state Cd voltammograms for an alginate gel-sol system in Donnan equilibrium. The key features are the limiting current, $I_\text{\ell}$, and the half-wave potential, $E_{1/2}$. After Davis et al.[17]}
\end{figure}
Fig. A2. Concentration of bound calcium, $[\text{Ca}^{\text{II}}]_{\text{gel}}$ (♦), and bound protons, $[\text{H}]_{\text{gel}}$ (●), in alginate gel as a function of pH at various bulk solution concentrations of Cd$^{2+}$ (Sol I – IV). $I = 10$ mM (3 mM Ca(NO$_3$)$_2$ + 1 mM NaNO$_3$).
Fig. A3. Total Ca content of alginate gel, [Ca$^{II}_{\text{total}}]_{\text{gel}}$, after consecutive equilibration in 3 mM Ca(NO$_3$)$_2$ + 1 mM NaNO$_3$ (step 1), 1 M HNO$_3$ (step 2), and once again in 3 mM Ca(NO$_3$)$_2$ + 1 mM NaNO$_3$ (step 3).
Fig. A4. Relative density of 1% alginate gels as a function of pH. I = 10 mM (3 mM Ca(NO$_3$)$_2$ + 1 mM NaNO$_3$). A reference value of 1 refers to the gel density following exposure of the gels to the standard setting solution of 50 mM Ca(NO$_3$)$_2$ + 20 mM NaNO$_3$. Error bars represent the standard deviation.