Accessory publication

Field intercomparison on the determination of volatile and semi-volatile polyfluorinated compounds in Air

Annekatrin Dreyer, A,F Mahiba Shoeib, B Stefan Fiedler, C Jon Barber, D,E Tom Harner, B Karl-Werner Schramm, C Kevin C. Jones D and Ralf Ebinghaus A

A GKSS Research Centre Geesthacht, Max Planck Straße 1, 21502 Geesthacht, Germany.
B Environment Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada.
C Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
D Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
E Cefas, Pakefield Road, Lowestoft, NR33 0HT, United Kingdom.
F Corresponding author. Email: annekatrin.dreyer@gkss.d.e

Sampling site .. 2
Sampling schedule .. 3
Analytes .. 4
Sampling rates and effective volumes .. 6
PFC concentrations during the sampling periods .. 8
Variation in derived air concentrations expressed as the ratio of active/passive .. 11
Passive air sampling (PAS) field sampling rates calibrated by high-volume samples .. 14
MDLs and IDLs ... 16
Recovery rates ... 17
Blanks ... 18
Fig. A1. Location and setup of the sampling site at Barsbüttel (BAR).
Sampling schedule

Fig. A2. Sampling schedule and Lab colour codes. \(n \) (High Vol) = 114; \(n \) (SIP disk, sorbent-impregnated polyurethane foam disk), 2 per period = 12 (Lab A, C), 2 per period = 4 (Lab B, D); \(n \) (SPMD, semipermeable membrane device), 6 per period = 36. I–VI: period numbers. I, 2 April 2007–4 June 2007; II, 4 June 2007–30 July 2007; III, 30 July 2007–1 October 2007; IV, 1 October 2007–3 December 2007; V, 3 December 2007–4 February 2008; VI, 4 February 2008–31 March 2008. Field blanks were taken once per month \(n = 12 \) (high-volume samples) or at the end of each period \(n = 6 \) (passive samples).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SIP disk</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SPMD</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SIP disk</td>
<td>–</td>
<td>II</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>SIP disk</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>High Vol</td>
<td>–</td>
<td>II</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field blanks were taken continuously for 3 and 4 days.
Analytes

Table A1. Analytical standards, their acronym, structure, and CAS number

n.a., not available

<table>
<thead>
<tr>
<th>Analytes</th>
<th>Acronym</th>
<th>Structure</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluorotelomer alcohols (FTOHs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:2 fluorotelomer alcohol</td>
<td>4:2 FTOH</td>
<td>(\text{F}_3\text{C}\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{CH}_2\text{OH})</td>
<td>2043-47-2</td>
</tr>
<tr>
<td>6:2 fluorotelomer alcohol</td>
<td>6:2 FTOH</td>
<td>(\text{F}_3\text{C}\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{CH}_2\text{OH})</td>
<td>647-42-7</td>
</tr>
<tr>
<td>8:2 fluorotelomer alcohol</td>
<td>8:2 FTOH</td>
<td>(\text{F}_3\text{C}\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{CH}_2\text{OH})</td>
<td>678-39-7</td>
</tr>
<tr>
<td>10:2 fluorotelomer alcohol</td>
<td>10:2 FTOH</td>
<td>(\text{F}_3\text{C}\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{CH}_2\text{OH})</td>
<td>865-86-1</td>
</tr>
<tr>
<td>12:2 fluorotelomer alcohol</td>
<td>12:2 FTOH</td>
<td>(\text{F}_3\text{C}\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{CH}_2\text{OH})</td>
<td>39239-77-5</td>
</tr>
<tr>
<td>fluorotelomer acrylates (FTAs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:2 fluorotelomer acrylate</td>
<td>6:2 FTA</td>
<td>(\text{O}\text{C}\text{H}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{OH})</td>
<td>17527-29-6</td>
</tr>
<tr>
<td>8:2 fluorotelomer acrylate</td>
<td>8:2 FTA</td>
<td>(\text{O}\text{C}\text{H}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{OH})</td>
<td>27905-45-9</td>
</tr>
<tr>
<td>10:2 fluorotelomer acrylate</td>
<td>10:2 FTA</td>
<td>(\text{O}\text{C}\text{H}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{OH})</td>
<td>17741-60-5</td>
</tr>
<tr>
<td>perfluoroalkyl sulfonamids (FASAs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Methyl-perfluorobutane sulfonamide</td>
<td>MeFBSA</td>
<td>(\text{F}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_3\text{N}\text{O}\text{H})</td>
<td>n.a.</td>
</tr>
<tr>
<td>N-Methyl-perfluorooctane sulfonamide</td>
<td>MeFOSA</td>
<td>(\text{F}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_3\text{N}\text{O}\text{H})</td>
<td>31506-32-8</td>
</tr>
<tr>
<td>N-Ethyl perfluorooctane sulfonamide</td>
<td>EtFOSA</td>
<td>(\text{F}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_2\text{N}\text{O}\text{H})</td>
<td>4151-50-2</td>
</tr>
<tr>
<td>N,N-dimethylperfluorooctane sulfonamide</td>
<td>Me\textsubscript{2}FOSA</td>
<td>(\text{F}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CH}_3\text{N}\text{O}\text{H})</td>
<td>213181-78-3</td>
</tr>
<tr>
<td>perfluoroalkyl sulfonamide ethanols (FASEs)</td>
<td>MeFBSE</td>
<td>MeFOSE</td>
<td>EtFOSE</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>N-Methyl-perfluorobutane sulfonamido ethanol</td>
<td>n.a.</td>
<td>24448-09-7</td>
<td>1691-99-2</td>
</tr>
<tr>
<td>N-Methyl-perfluorooctane sulfonamido ethanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Ethyl-perfluorooctane sulfonamido ethanol</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sampling rates and effective volumes

Table A2. Linear SIP disk and SPMD sampling rates \((R_s, \text{ m}^3 \text{ day}^{-1}) \) reported in literature

Note that linear sampling rates were not applicable to calculate SIP-based FTOH concentrations in this study since SIP disks already reached the equilibrium uptake phase. n.a., not analysed

<table>
<thead>
<tr>
<th>Compound</th>
<th>(R_s) (SIP disk) (\text{(Shoeib et al.}^{[25]})</th>
<th>(R_s) (SPMD) (\text{(Fiedler et al.}^{[30]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:2 FTOH</td>
<td>4.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>4.6</td>
<td>1.4</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>4.6</td>
<td>2.6</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>2.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>2.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>1.5</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>1.4</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Table A3. Effective volumes (m³) used in this study to calculate FTOH air concentrations from SIP sampling

<table>
<thead>
<tr>
<th>Deployment time (in days)</th>
<th>Period I</th>
<th>Period II</th>
<th>Period III</th>
<th>Period IV</th>
<th>Period V</th>
<th>Period VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average air temperature (°C)</td>
<td>12.2</td>
<td>17.1</td>
<td>15.3</td>
<td>6.9</td>
<td>4.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Effective air volumes (m³)</td>
<td>160</td>
<td>121</td>
<td>137</td>
<td>198</td>
<td>210</td>
<td>190</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>155</td>
<td>118</td>
<td>133</td>
<td>193</td>
<td>206</td>
<td>186</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>158</td>
<td>121</td>
<td>136</td>
<td>194</td>
<td>207</td>
<td>188</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>132</td>
<td>102</td>
<td>114</td>
<td>162</td>
<td>176</td>
<td>162</td>
</tr>
</tbody>
</table>
Polyfluorinated compound (PFC) concentrations in the intercomparison standard solution

Table A4. PFC concentrations (pg µL⁻¹) in a circulated intercomparison standard solution

Nominal concentration, 50 pg µL⁻¹; s.d., standard deviation; r.s.d., relative standard deviation; n.a., not analysed

<table>
<thead>
<tr>
<th>Compound</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c ± s.d. (r.s.d., %)</td>
</tr>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>38 ± 16 (43)</td>
<td>68 ± 3.8 (5.6)</td>
<td>44 ± 0.3 (0.7)</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>49 ± 1.5 (3.0)</td>
<td>65 ± 12 (18)</td>
<td>60 ± 2.8 (4.6)</td>
<td>45 ± 0.3 (0.8)</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>31 ± 1.2 (3.8)</td>
<td>37 ± 13 (36)</td>
<td>45 ± 3.8 (8.5)</td>
<td>41 ± 0.5 (1.1)</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>27 ± 0.5 (1.9)</td>
<td>54 ± 11 (20)</td>
<td>45 ± 4.4 (9.9)</td>
<td>40 ± 0.4 (0.9)</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>54 ± 7.7 (14.4)</td>
<td>39 ± 0.8 (1.9)</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>57 ± 2.0 (3.6)</td>
<td>40 ± 0.2 (0.5)</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>58 ± 3.7 (6.3)</td>
<td>42 ± 0.4 (0.9)</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>39 ± 0.5 (1.2)</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>21 ± 2.8 (13.3)</td>
<td>35 ± 0.3 (0.8)</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>22 ± 0.9 (4.2)</td>
<td>n.a.</td>
<td>42 ± 0.8 (1.8)</td>
<td>39 ± 0.2 (0.5)</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>27 ± 0.4 (1.4)</td>
<td>n.a.</td>
<td>41 ± 2.6 (6.3)</td>
<td>37 ± 0.3 (0.8)</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>45 ± 3.1 (6.8)</td>
<td>34 ± 0.4 (1.0)</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>21 ± 1.6 (7.7)</td>
<td>n.a.</td>
<td>73 ± 2.2 (3.1)</td>
<td>37 ± 2.4 (6.5)</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>21 ± 2.7 (13)</td>
<td>n.a.</td>
<td>43 ± 4.6 (10.7)</td>
<td>36 ± 1.7 (4.8)</td>
</tr>
</tbody>
</table>
PFC concentrations during the sampling periods

Table A5. Concentrations (pg m⁻³) of volatile PFCs determined by passive sampling and concentrations averages of high-volume samples for period I

n.a., not analysed; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab A (SIP disk)</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
<th>Lab D (High Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.4</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>11</td>
<td>n.d.</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>54</td>
<td>55</td>
<td>52</td>
<td>97</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>19</td>
<td>12</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>8.5</td>
<td>8.9</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>2.0</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>4.0</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.2</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>2.3</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>2.5</td>
<td>n.a.</td>
<td>5.6</td>
<td>1.7</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>1.6</td>
<td>n.a.</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>7.0</td>
<td>1.9</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>7</td>
<td>n.a.</td>
<td>n.d.</td>
<td>2.2</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>n.d.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table A6. Concentrations (pg m⁻³) of volatile PFCs determined by passive sampling and concentrations averages of high-volume samples for period II

n.a., not analysed; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab A (SIP disk)</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
<th>Lab D (High Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.0</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>14</td>
<td>n.d.</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>74</td>
<td>38</td>
<td>63</td>
<td>108</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>31</td>
<td>5.4</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>10</td>
<td>9.2</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>3.7</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>6.4</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.6</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>6.9</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>3.9</td>
<td>n.a.</td>
<td>5.1</td>
<td>6.3</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>1.6</td>
<td>n.a.</td>
<td>n.d.</td>
<td>2.4</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>4.2</td>
<td>6.2</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>13</td>
<td>n.a.</td>
<td>n.d.</td>
<td>4.5</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>5.4</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Table A7. Concentrations (pg m\(^{-3}\)) of volatile PFCs determined by passive sampling and concentrations averages of high-volume samples for period III

n.a., not analysed; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab A (SIP disk)</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
<th>Lab D (High Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.2</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>35</td>
<td>n.d.</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>62</td>
<td>59</td>
<td>74</td>
<td>69</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>33</td>
<td>13</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>8.4</td>
<td>9.6</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.9</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>6.1</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.6</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.2</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>3.7</td>
<td>n.a.</td>
<td>3.7</td>
<td>2.8</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>1.4</td>
<td>n.a.</td>
<td>2.8</td>
<td>1.3</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>11.3</td>
<td>3.5</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>16</td>
<td>n.a.</td>
<td>12.1</td>
<td>3.4</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>5.4</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table A8. Concentrations (pg m\(^{-3}\)) of volatile PFCs determined by passive sampling and concentrations averages of high-volume samples for period IV

n.a., not analysed; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab A (SIP disk)</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
<th>Lab D (High Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.4</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>24</td>
<td>n.d.</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>61</td>
<td>n.d.</td>
<td>63</td>
<td>54</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>27</td>
<td>n.d.</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.0</td>
<td>3.8</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.1</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>5.0</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.6</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.6</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>3.9</td>
<td>n.a.</td>
<td>2.9</td>
<td>1.7</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>1.0</td>
<td>n.a.</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>7.7</td>
<td>3.0</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>14</td>
<td>n.a.</td>
<td>9.0</td>
<td>2.2</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>4.7</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Table A9. Concentrations (pg m$^{-3}$) of volatile PFCs determined by passive sampling and concentrations of high-volume samples for period V

n.a., not analysed; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab A (SIP disk)</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
<th>Lab D (High Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.5</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>24</td>
<td>n.d.</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>58</td>
<td>n.d.</td>
<td>61</td>
<td>38</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>36</td>
<td>n.d.</td>
<td>17</td>
<td>8.6</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3.9</td>
<td>15</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.4</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>3.6</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>4.0</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>3.6</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>6.2</td>
<td>n.a.</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>1.1</td>
<td>n.a.</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>6.1</td>
<td>1.4</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>15</td>
<td>n.a.</td>
<td>5.4</td>
<td>1.1</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>3.1</td>
<td>n.a.</td>
<td>n.d.</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table A10. Concentrations (pg m$^{-3}$) of volatile PFCs determined by passive sampling and concentrations averages of high-volume samples for period VI

n.a., not analysed; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab A (SIP disk)</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
<th>Lab D (High Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.8</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>29</td>
<td>n.d.</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>64</td>
<td>n.d.</td>
<td>72</td>
<td>48</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>32</td>
<td>n.d.</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3.0</td>
<td>14</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>1.2</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>3.2</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3.9</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>2.4</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>5.4</td>
<td>n.a.</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>1.5</td>
<td>n.a.</td>
<td>2.4</td>
<td>0.7</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>7.7</td>
<td>1.7</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>14</td>
<td>n.a.</td>
<td>4.7</td>
<td>1.2</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>3.5</td>
<td>n.a.</td>
<td>n.d.</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Variation in derived air concentrations expressed as the ratio of active/passive

Table A11. Ratios for active: SIP-derived air concentrations for 6:2 FTOH

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.2</td>
<td>n.d.</td>
<td>2.2</td>
</tr>
<tr>
<td>II</td>
<td>2.4</td>
<td>n.d.</td>
<td>2.6</td>
</tr>
<tr>
<td>III</td>
<td>1.0</td>
<td>n.d.</td>
<td>3.0</td>
</tr>
<tr>
<td>IV</td>
<td>0.9</td>
<td>n.d.</td>
<td>1.9</td>
</tr>
<tr>
<td>V</td>
<td>0.6</td>
<td>n.d.</td>
<td>0.9</td>
</tr>
<tr>
<td>VI</td>
<td>0.4</td>
<td>n.d.</td>
<td>0.6</td>
</tr>
<tr>
<td>Mean</td>
<td>1.3</td>
<td>n.d.</td>
<td>1.9</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.8</td>
<td>n.d.</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table A12. Ratios for active: SIP-derived air concentrations for 8:2 FTOH

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>II</td>
<td>1.5</td>
<td>2.8</td>
<td>1.7</td>
</tr>
<tr>
<td>III</td>
<td>1.1</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>IV</td>
<td>0.9</td>
<td>n.d.</td>
<td>0.9</td>
</tr>
<tr>
<td>V</td>
<td>0.7</td>
<td>n.d.</td>
<td>0.6</td>
</tr>
<tr>
<td>VI</td>
<td>0.8</td>
<td>n.d.</td>
<td>0.7</td>
</tr>
<tr>
<td>Mean</td>
<td>1.1</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.4</td>
<td>0.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table A13. Ratios for active: SIP-derived air concentrations for 10:2 FTOH

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.8</td>
<td>2.8</td>
<td>1.7</td>
</tr>
<tr>
<td>II</td>
<td>1.1</td>
<td>6.0</td>
<td>1.3</td>
</tr>
<tr>
<td>III</td>
<td>1.0</td>
<td>2.5</td>
<td>1.9</td>
</tr>
<tr>
<td>IV</td>
<td>0.7</td>
<td>n.d.</td>
<td>1.0</td>
</tr>
<tr>
<td>V</td>
<td>0.2</td>
<td>n.d.</td>
<td>0.5</td>
</tr>
<tr>
<td>VI</td>
<td>0.5</td>
<td>n.d.</td>
<td>0.8</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9</td>
<td>3.8</td>
<td>1.2</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.6</td>
<td>1.9</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Table A14. Ratios for active: SIP-derived air concentrations for 12:2 FTOH

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.0</td>
</tr>
<tr>
<td>II</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.9</td>
</tr>
<tr>
<td>III</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.1</td>
</tr>
<tr>
<td>IV</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.9</td>
</tr>
<tr>
<td>V</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3.8</td>
</tr>
<tr>
<td>VI</td>
<td>n.a.</td>
<td>n.a.</td>
<td>4.6</td>
</tr>
<tr>
<td>mean</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.2</td>
</tr>
<tr>
<td>s.d.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table A15. Ratios for active: SIP-derived air concentrations for MeFOSA

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.7</td>
<td>n.a.</td>
<td>0.3</td>
</tr>
<tr>
<td>II</td>
<td>1.6</td>
<td>n.a.</td>
<td>1.2</td>
</tr>
<tr>
<td>III</td>
<td>0.8</td>
<td>n.a.</td>
<td>0.7</td>
</tr>
<tr>
<td>IV</td>
<td>0.4</td>
<td>n.a.</td>
<td>0.6</td>
</tr>
<tr>
<td>V</td>
<td>0.2</td>
<td>n.a.</td>
<td>0.6</td>
</tr>
<tr>
<td>VI</td>
<td>0.2</td>
<td>n.a.</td>
<td>0.4</td>
</tr>
<tr>
<td>mean</td>
<td>0.7</td>
<td>n.a.</td>
<td>0.7</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.5</td>
<td>n.a.</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table A16. Ratios for active: SIP-derived air concentrations for EtFOSA

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.8</td>
<td>n.a.</td>
<td>1.9</td>
</tr>
<tr>
<td>II</td>
<td>1.5</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>III</td>
<td>0.9</td>
<td>n.a.</td>
<td>0.5</td>
</tr>
<tr>
<td>IV</td>
<td>2.0</td>
<td>n.a.</td>
<td>1.3</td>
</tr>
<tr>
<td>V</td>
<td>0.7</td>
<td>n.a.</td>
<td>0.4</td>
</tr>
<tr>
<td>VI</td>
<td>0.5</td>
<td>n.a.</td>
<td>0.3</td>
</tr>
<tr>
<td>mean</td>
<td>1.1</td>
<td>n.a.</td>
<td>0.9</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.6</td>
<td>n.a.</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Table A17. Ratios for active: SIP-derived air concentrations for MeFBSE

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.3</td>
</tr>
<tr>
<td>II</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.5</td>
</tr>
<tr>
<td>III</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.3</td>
</tr>
<tr>
<td>IV</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.4</td>
</tr>
<tr>
<td>V</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.2</td>
</tr>
<tr>
<td>VI</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.2</td>
</tr>
<tr>
<td>mean</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.5</td>
</tr>
<tr>
<td>s.d.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table A18. Ratios for active: SIP-derived air concentrations for MeFOSE

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.3</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>II</td>
<td>0.3</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>III</td>
<td>0.2</td>
<td>n.a.</td>
<td>0.3</td>
</tr>
<tr>
<td>IV</td>
<td>0.2</td>
<td>n.a.</td>
<td>0.2</td>
</tr>
<tr>
<td>V</td>
<td>0.1</td>
<td>n.a.</td>
<td>0.2</td>
</tr>
<tr>
<td>VI</td>
<td>0.1</td>
<td>n.a.</td>
<td>0.2</td>
</tr>
<tr>
<td>mean</td>
<td>0.2</td>
<td>n.a.</td>
<td>0.2</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.1</td>
<td>n.a.</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table A19. Ratios for active: SIP-derived air concentrations for EtFOSE

<table>
<thead>
<tr>
<th>Period</th>
<th>A (SIP disk)</th>
<th>B (SPMD)</th>
<th>C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>n.d.</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>II</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>III</td>
<td>0.3</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>IV</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>V</td>
<td>0.1</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>VI</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>mean</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.1</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

n.a., not analysed; n.d., not detected
Passive air sampling (PAS) field sampling rates calibrated by high-volume samples

Table A20. Sampling rates (m3 day$^{-1}$) calculated for period I using high-volume data

T, annual temperature average (°C), 12.2°C; U, annual wind speed average (m s$^{-1}$), 2.3 m s$^{-1}$; n.a., not analysed; n.c., not calculated; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab A (SIP disk)</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
<td>n.c.</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>n.c.</td>
<td>0.8</td>
<td>n.c.</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>n.c.</td>
<td>0.9</td>
<td>n.c.</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
<td>n.c.</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>6.6</td>
<td>n.a.</td>
<td>7.4</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>4.2</td>
<td>n.a.</td>
<td>1.2</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3.8</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>8.6</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>n.d.</td>
<td>n.a.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Table A21. Sampling rates (m3 day$^{-1}$) calculated for period II using high-volume data

T, 17.1°C; U, 2.1 m s$^{-1}$; n.a., not analysed; n.c., not calculated; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>n.c.</td>
<td>0.4</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>1.9</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>2.3</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>n.a.</td>
<td>0.7</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>8.0</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>9.7</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>0.8</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Table A22: Sampling rates (m3 day$^{-1}$) calculated for period III using high-volume data

T, 15.3°C; U, 2.1 m s$^{-1}$; n.a., not analysed; n.c., not calculated; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lab B (SPMD)</th>
<th>Lab C (SIP disk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>n.c.</td>
<td>2.5</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>n.c.</td>
<td>3.5</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>6.0</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>4.0</td>
<td>3.1</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>3.4</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>12.4</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>7.5</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
Table A23. Sampling rates (m^3 day$^{-1}$) calculated for period IV using high-volume data

T, 6.9°C; U, 2.0 m s$^{-1}$; n.a., not analysed; n.c., not calculated; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sampling rate (m^3 day$^{-1}$)</th>
<th>Period IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (SIP disk)</td>
<td>B (SPMD)</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>n.c.</td>
<td>n.d.</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>n.c.</td>
<td>n.d.</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>10.3</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>1.7</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>16.7</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>9.8</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Table A24. Sampling rates (m^3 day$^{-1}$) calculated for period V using high-volume data

T, 4.4°C; U, 3.7 m s$^{-1}$; n.a., not analysed; n.c., not calculated; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sampling rate (m^3 day$^{-1}$)</th>
<th>Period V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (SIP disk)</td>
<td>B (SPMD)</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>n.c.</td>
<td>n.d.</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>n.c.</td>
<td>n.d.</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>19.0</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>4.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>37.1</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>16.0</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Table A25. Sampling rates (m^3 day$^{-1}$) calculated for period VI using high-volume data

T, 4.7°C; U, 3.9 m s$^{-1}$; n.a., not analysed; n.c., not calculated; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sampling rate (m^3 day$^{-1}$)</th>
<th>Period VI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (SIP disk)</td>
<td>B (SPMD)</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>n.c.</td>
<td>n.d.</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>n.c.</td>
<td>n.d.</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.c.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>20.0</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>7.4</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>33.2</td>
<td>n.a.</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>13.6</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
MDLs and IDLs

Table A26. Instrumental detection limits (IDL, pg µL\(^{-1}\))

<table>
<thead>
<tr>
<th>Compound</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>10</td>
<td>11</td>
<td>0.8</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>0.9</td>
<td>5</td>
<td>2.1</td>
<td>0.9</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>1.1</td>
<td>5</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>0.6</td>
<td>5</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>5.9</td>
<td>0.8</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.9</td>
<td>0.1</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.1</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>0.1</td>
<td>n.a.</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>0.1</td>
<td>n.a.</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.9</td>
<td>0.1</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>1.0</td>
<td>n.a.</td>
<td>3.6</td>
<td>0.1</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>0.6</td>
<td>n.a.</td>
<td>3.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table A27. Method detection limits (MDL)

MDLs (pg m\(^{-3}\)) for lab A, B, C were estimated from MDLs (pg mL\(^{-1}\)). For FTOHs, MDLs (pg m\(^{-3}\)) = MDLs (pg mL\(^{-1}\)) average effective volume (sampling duration of 60 days). For FASAs and FASEs, MDLs (pg m\(^{-3}\)) = MDLs (pg mL\(^{-1}\)) (60 days) sampling rate calculated in this study (Table 3). n.a., not analysed; n.d., not detected

<table>
<thead>
<tr>
<th>Compound</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>20</td>
<td>37</td>
<td>3.0</td>
<td>n.a.</td>
<td>n.d.</td>
<td>22</td>
<td><0.1</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>0.6</td>
<td>15</td>
<td>10</td>
<td>2.3</td>
<td>1.8</td>
<td>n.d.</td>
<td>5.9</td>
<td><0.9</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>0.7</td>
<td>15</td>
<td>2.9</td>
<td>4.5</td>
<td>2.1</td>
<td>36</td>
<td>1.8</td>
<td><0.7</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>0.4</td>
<td>10</td>
<td>3.1</td>
<td>1.8</td>
<td>1.2</td>
<td>13</td>
<td>1.9</td>
<td><0.1</td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>14</td>
<td>1.1</td>
<td>n.a.</td>
<td>n.a.</td>
<td>9.9</td>
<td><0.4</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>8.9</td>
<td>1.2</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td><0.2</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.1</td>
<td>0.3</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td><0.1</td>
</tr>
<tr>
<td>10:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.1</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td><0.1</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.0</td>
<td>0.7</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.9</td>
<td><0.3</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>0.1</td>
<td>n.a.</td>
<td>3.8</td>
<td>0.9</td>
<td>0.1</td>
<td>n.a.</td>
<td>1.3</td>
<td><0.4</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>0.1</td>
<td>n.a.</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>n.a.</td>
<td>0.3</td>
<td><0.1</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.1</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.7</td>
<td><0.1</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>0.6</td>
<td>n.a.</td>
<td>13</td>
<td>1.0</td>
<td>0.5</td>
<td>n.a.</td>
<td>3.4</td>
<td><0.2</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>0.4</td>
<td>n.a.</td>
<td>4.3</td>
<td>0.2</td>
<td>0.5</td>
<td>n.a.</td>
<td>n.d.</td>
<td><0.4</td>
</tr>
</tbody>
</table>
Recovery rates

Table A28. Average recovery rates (R, %) of PFCs determined by different sampling techniques

Note: signal enhancement was involved at lab A and C. s.d., standard deviation (%); r.s.d., relative standard deviation (%); n.a., not analysed

<table>
<thead>
<tr>
<th>Compound</th>
<th>Average recovery rates (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (SIP disk)</td>
<td>B (SPMD)</td>
<td>C (SIP disk)</td>
<td>D (High Vol)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R ± s.d. (r.s.d.)</td>
<td>R ± s.d. (r.s.d.)</td>
<td>R ± s.d. (r.s.d.)</td>
<td>R ± s.d. (r.s.d.)</td>
<td></td>
</tr>
<tr>
<td>13C 4:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>21 ± 13 (1.1)</td>
<td></td>
</tr>
<tr>
<td>13C 6:2 FTOH</td>
<td>90 ± 22 (24)</td>
<td>n.a.</td>
<td>85 ± 26 (31)</td>
<td>39 ± 20 (1.1)</td>
<td></td>
</tr>
<tr>
<td>13C 8:2 FTOH</td>
<td>70 ± 19 (26)</td>
<td>54 ± 8.6 (16)</td>
<td>129 ± 43 (34)</td>
<td>49 ± 23 (1.3)</td>
<td></td>
</tr>
<tr>
<td>13C 10:2 FTOH</td>
<td>117 ± 13 (11)</td>
<td>63 ± 14 (22)</td>
<td>108 ± 45 (41)</td>
<td>45 ± 32 (1.2)</td>
<td></td>
</tr>
<tr>
<td>D3 MeFOSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>76 ± 19 (24)</td>
<td>41 ± 19 (0.7)</td>
<td></td>
</tr>
<tr>
<td>D5 EtFOSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>85 ± 9 (11)</td>
<td>45 ± 19 (1.2)</td>
<td></td>
</tr>
<tr>
<td>D7 MeFOSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>101 ± 14 (14)</td>
<td>60 ± 27 (1.5)</td>
<td></td>
</tr>
<tr>
<td>D9 EtFOSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>103 ± 16 (15)</td>
<td>59 ± 21 (1.0)</td>
<td></td>
</tr>
<tr>
<td>5:1 FA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>75 ± 12 (16)</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>7:1 FA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>75 ± 33 (44)</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>9:1 FA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>105 ± 31 (30)</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>11:1 FA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>136 ± 34 (25)</td>
<td>n.a.</td>
<td></td>
</tr>
</tbody>
</table>
Blanks

Table A29. Average laboratory and field blanks (pg m⁻³)

n.a., not analysed; n.d., not detected

<table>
<thead>
<tr>
<th></th>
<th>lab A (SIP disk)</th>
<th>lab B (SPMD)</th>
<th>lab C (SIP disk)</th>
<th>lab D (High Vol)</th>
<th>lab A (SIP disk)</th>
<th>lab B (SPMD)</th>
<th>lab C (SIP disk)</th>
<th>lab D (High Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTOH</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>3.3</td>
<td>1.0</td>
</tr>
<tr>
<td>6:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.4</td>
<td>0.2</td>
<td>n.d.</td>
<td>6.3</td>
<td>25</td>
<td>0.8</td>
</tr>
<tr>
<td>8:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.3</td>
<td>0.1</td>
<td>3.4</td>
<td>1.5</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.1</td>
<td>0.1</td>
<td>n.a.</td>
<td>0.6</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>12:2 FTOH</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.6</td>
<td>0.3</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>6:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.02</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>0.7</td>
</tr>
<tr>
<td>8:2 FTA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.0</td>
</tr>
<tr>
<td>MeFBSA</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.a.</td>
<td>0.001</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>MeFOSA</td>
<td>n.d.</td>
<td>n.a.</td>
<td>1.7</td>
<td>0.2</td>
<td>2.2</td>
<td>n.a.</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>n.d.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>0.1</td>
<td>n.d.</td>
<td>n.a.</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>MeFBSE</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.2</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>MeFOSE</td>
<td>n.d.</td>
<td>n.a.</td>
<td>0.8</td>
<td>0.1</td>
<td>n.d.</td>
<td>n.a.</td>
<td>5.6</td>
<td>0.7</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>n.d.</td>
<td>n.a.</td>
<td>0.6</td>
<td>0.1</td>
<td>n.d.</td>
<td>n.a.</td>
<td>n.d.</td>
<td>0.8</td>
</tr>
</tbody>
</table>