Accessory publication

Salinity-induced acidification in a wetland sediment through the displacement of clay-bound iron(II)

Annaleise Klein, Darren Baldwin, Balwant Singh, and Ewen Silvester

A Department of Environmental Management and Ecology (DEME), La Trobe University, Albury-Wodonga Campus, VIC 3690, Australia.

B Murray–Darling Freshwater Research Centre (MDFRC), CSIRO Land and Water, La Trobe University, Albury-Wodonga Campus, VIC 3690, Australia.

C Faculty of Agriculture, Food and Natural Resources, The University of Sydney, NSW 2006, Australia.

D Corresponding author: e.silvester@latrobe.edu.au
Fig. A1. (a) Experimental charge equivalent fractions of Na⁺ and H⁺ exchanged onto purified Norman’s Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper). (b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (○) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction Na⁺ in solution.
Fig. A2. (a) Experimental charge equivalent fractions of K^+, Na^+ and H^+ exchanged onto purified Norman’s Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper). (b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (○) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction K^+ in solution.
Fig. A3. (a) Experimental charge equivalent fractions of Mg$^{2+}$, Na$^+$ and H$^+$ exchanged onto purified Norman’s Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper). (b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (O) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction Mg$^{2+}$ in solution.
Fig. A4. (a) Experimental charge equivalent fractions of Ca\(^{2+}\), Na\(^+\) and H\(^+\) exchanged onto purified Norman’s Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper). (b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (○) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction Ca\(^{2+}\) in solution.
Fig. A5. (a) Experimental charge equivalent fractions of Fe2+, Na+ and H+ exchanged onto purified Norman’s Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper). (b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (○) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction Fe2+ in solution.
Fig. A6. Buffering properties of Norman’s Lagoon clay sediment (not purified) after exchange with chloride salts of: Na\(^+\), K\(^+\), Ca\(^{2+}\) or Mg\(^{2+}\) and then washed with purified water (MilliQ), or washed with MilliQ water without prior exchange. Titration conditions as described in main paper.