Supplementary material

Identification of water-soluble organic carbon in nonurban aerosols using ultrahighresolution FT-ICR mass spectrometry: organic anions

Lynn R. Mazzoleni,^{A,B,E} Parichehr Saranjampour,^A Megan M. Dalbec,^C Vera Samburova,^D A. Gannet Hallar,^D Barbara Zielinska,^D Douglas Lowenthal^D and Steve Kohl^D

^AMichigan Technological University, Department of Chemistry, Houghton, MI 49931, USA.

^BMichigan Technological University, Atmospheric Sciences Program, Houghton, MI 49931, USA.

^CMichigan Technological University, Department of Civil and Environmental Engineering, Houghton, MI 49931, USA.

^DDesert Research Institute, Division of Atmospheric Science, Reno, NV 89512, USA.

^ECorresponding author. Email: lrmazzol@mtu.edu

A complete list of the assigned molecular formulas is provided via in Table S1, available as a separate Microsoft Excel 2007 workbook ('EN11167 TS1.xls'). A description of the provided data is as follows: column 'A' lists the averaged S4SXA negative ion mass-to-charge ratio (m/z) measured and internally recalibrated as described in the methods section; column 'B' lists the calculated neutral masses (Da) assuming the loss of 1 H for each identified m/z; column 'C' lists the averaged S4SXA relative abundance (%; note relative abundances are relative to the base peak = 100 %) for each identified m/z; column 'D' lists the averaged S4SXA absolute error (ppm) associated with each formula assignment; column 'E' indicates if the molecular formula and measured m/z were used in the internal recalibration procedure; column 'F' indicates if the molecular formula and measured m/z were detected in blank analyses and provides the blank relative abundance (%; base peak = m/z 564.2828); column 'G' lists the calculated double bond equivalents values for each identified m/z; column 'H' lists the group assignments (based on the elemental composition); column 'I' lists the subgroup assignments; column 'J' provides the assigned molecular formula for each m/z; column 'K' lists the number of carbon atoms in the assigned formula; column 'L' lists the number of hydrogen atoms in the assigned formula; column 'M' lists the number of nitrogen atoms in the assigned formula; column 'N' lists the number of oxygen atoms in the assigned formula; column 'O' lists the number of sulfur atoms in the assigned formula; column 'P' lists the S4SXA measured negative ion m/z measured and internally recalibrated as described in the methods section; column 'O' lists the S4SXA relative abundance (%) for each identified m/z; column 'R' lists the S4SXA absolute error (ppm) associated with each formula assignment; column 'S' lists the S4SXAR1 (R1 indicates replicate measurement 1) measured negative ion m/z measured and internally recalibrated as described in the methods section; column 'T' lists the S4SXAR1 relative abundance (%) for each identified m/z; column 'U' lists the S4SXAR1 absolute error (ppm) associated with each formula assignment; column 'V' lists the

S4SXAR2 (R2 indicates replicate measurement 2) measured negative ion m/z measured and internally recalibrated as described in the methods section; column 'W' lists the S4SXAR2 relative abundance (%) for each identified m/z; column 'X' lists the S4SXAR2 absolute error (ppm) associated with each formula assignment; column 'Y' lists the S4SXAR3 (R3 indicates replicate measurement 3) measured negative ion m/z measured and internally recalibrated as described in the methods section; column 'Z' lists the S4SXAR3 relative abundance (%) for each identified m/z; column 'AA' lists the S4SXAR3 absolute error (ppm) associated with each formula assignment; column 'AB' lists the S4SXAR4 (R4 indicates replicate measurement 4) measured negative ion m/z measured and internally recalibrated as described in the methods section; column 'AC' lists the S4SXAR4 relative abundance (%) for each identified m/z; column 'AD' lists the S4SXAR4 absolute error (ppm) associated with each formula assignment; column 'AE' indicates if the identified formula was matched to the α -pinene/O₃ SOA molecular formulas presented in Putman et al.^[1]; column 'AF' indicates if the identified formula was matched to the limonene/O₃ SOA molecular formulas presented in Kundu et al.^[2]; column 'AG' indicates if the identified formula was matched to the caryophyllene/O3 SOA molecular formulas identified by L. R. Mazzoleni, S. Kundu, R. Fisseha, A. L. Putman, T. A. Rahn (unpubl. data); column 'AH' indicates if the identified formula was matched to the α-pinene/O₃ SOA molecular formulas identified by Mazzoleni et al.(unpubl. data) column 'AI' indicates if the identified formula was matched to the β -pinene/O₃ SOA molecular formulas identified by Mazzoleni et al. (unpubl. data), and column 'AJ' indicates all other matches including those from Chan et al.,^[3] Laskin et al.,^[4] Nozière et al.^[5] and Surratt et al.^[6]

Fig. S1. The average mass spectra for the sample (S4SXA) and the field blank without any post-processing. See also Fig. 1 in the main paper.

Fig. S2. Elemental ratio plots: (A) 1506 compounds containing only C, H and O atoms; (B) 1385 compounds containing only C, H, N and O atoms; (C) 641 compounds containing only C, H, O and S atoms and (D) 205 compounds containing C, H, N, O and S atoms. See also Fig. 2 in the main paper for the isoabundance elemental ratio plots.

Fig. S3. Relative abundance for each elemental groups with respect to the number of carbon atoms identified in the molecular formulas: (A) 1506 compounds containing only C, H and O atoms; (B) 1385 compounds containing only C, H, N and O atoms; (C) 641 compounds containing only C, H, O and S atoms; and (D) 205 compounds containing C, H, N, O and S atoms.

References

 A. L. Putman, J. H. Offenberg, R. Fisseha, S. Kundu, T. A. Rahn, L. R. Mazzoleni, Ultrahighresolution FT-ICR mass spectrometry characterization of a-pinene ozonolysis SOA. *Atmos. Environ.* 2012, 46, 164–72. doi:10.1016/j.atmosenv.2011.10.003

[2] S. Kundu, R. Fisseha, A. L. Putman, T. A. Rahn, L. R. Mazzoleni, High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization. *Atmos. Chem. Phys.*, in press.

[3] M. N. Chan, J. D. Surratt, A. W. H. Chan, K. Schilling, J. H. Offenberg, M. Lewandowski, E. O.
Edney, T. E. Kleindienst, M. Jaoui, E. S. Edgerton, R. L. Tanner, S. L. Shaw, M. Zheng, E. M. Knipping, J.
H. Seinfeld, Influence of aerosol acidity on the chemical composition of secondary organic aerosol from beta-caryophyllene. *Atmos. Chem. Phys.* 2011, *11*, 1735–51. doi:10.5194/acp-11-1735-2011

[4] J. Laskin, A. Laskin, P. J. Roach, G. W. Slysz, G. A. Anderson, S. A. Nizkorodov, D. L. Bones, L. Q. Nguyen, High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. *Anal. Chem.* **2010**, *82*, 2048–58. <u>doi:10.1021/ac902801f</u>

[5] B. Nozière, S. Ekstrom, T. Alsberg, S. Holmstrom, Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. *Geophys. Res. Lett.* **2010**, *37*, L05806. <u>doi:10.1029/2009GL041683</u>

[6] J. D. Surratt, Y. Gomez-Gonzalez, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E.
O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, W. Maenhaut, M. Claeys, R. C. Flagan, J. H.
Seinfeld, Organosulfate formation in biogenic secondary organic aerosol. *J. Phys. Chem. A* 2008, *112*, 8345–78. doi:10.1021/jp802310p