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Fig. S1. Measured and modelled H,O, concentration in H,O, + UV control experiment. The concentration of H,0,
as a function of time in the H,O, + UV control experiments was modelled (FACSIMILE for Windows Version

4.1.45) using the following reactions and rate constants provided by Lim et al.™™ with the expection of k;.
H,0, + UV — OH" + OH" (ky)
OH’" + H,0, > HO, + H,0
HO, + H,0, - OH" + H,0 + O,
HO, + HO, —» H,0, + O,
OH" + HO, - H,0+ O,
OH + OH — H,0,

The H,0, photolysis rate constant, ky = 1.0 x 10 was determined by fitting the model to measured H,0,
concentrations. This value of k; was then used in the FACSIMILE model for glyoxal to estimate the

concentration of OH' (M; [OH Tiitiar = 7.8 % 10, [OHJsiner = 6.0 X 107, [OH Javerage = (1 £ 2) x 10°%)

during glyoxal experiments from initial precursor concentrations (e.g., 5 mM H,0,, 1 mM GLY).!!
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Fig. S2.
from H,0, photolysis and reacts with GLY and its reaction products. Inclusion of HNOj reactions discussed in the

methods does not change [OH"] prediction.
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Fig. S3. Modelled oxalate concentrations from GLY + OH’ with and without HNOs.
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Fig. S4. Modelled nitrate concentration in GLY + OH" + HNO; experiment.
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Modelled pH in GLY + OH’ experiments conducted in the presence and absence of HNOs.
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Fig. S6. Oxalate concentration measured by IC in GLY + HNO; + UV control experiment. Some oxalate
formation is seen, but concentrations are much lower and formation is much slower than in GLY + OH" + HNO;
experiments. OH’ production from HNO; + UV is modest.

2000 T
OpooBg0Ogp u] 1 o = u]
s
=
~ 1000 -
-]
©
=
4
0 . T .
0 100 200

Experiment Time (min)

Fig. S7. Nitrate concentration measured by IC in GLY + HNO; + UV control experiment.
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Fig. S8. Nitrate concentration measured by IC in GLY + OH" + HNO; experiment. Error bars represent the

coefficient of variation (<1 %) across three experiments.
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