Supplementary material

A method to determine silver partitioning and lability in soils

Lara SettimioA,C, Mike J. McLaughlinA,B, Jason K. KirbyB, Kate A. LangdonB

AWaite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Road, SA 5064, Australia.

BCSIRO Land and Water, Contaminant Chemistry and Ecotoxicology program, Minerals Down Under Flagship, Waite Campus, Waite Road, SA 5064, Australia.

CCorresponding author. Email: lara.settimo@adelaide.edu.au

Fig. S1. Relationship between log K_d for Ag and log K_d for DOC.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig_s1.png}
\caption{Relationship between log K_d for Ag and log K_d for DOC.}
\end{figure}

Fig. S2. Multiple linear regression of the measured log(K_d-values) for Ag in H$_2$O for soils spiked at 5 mg kg-1 v. predicted log(K_d-values). The fitted line is log (K_d\textsubscript{predicted}) = 2.8(log K_d(OC)) + 5.7(log pH) – 8.8.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig_s2.png}
\caption{Multiple linear regression of the measured log(K_d-values) for Ag in H$_2$O for soils spiked at 5 mg kg-1 v. predicted log(K_d-values). The fitted line is log (K_d\textsubscript{predicted}) = 2.8(log K_d(OC)) + 5.7(log pH) – 8.8.}
\end{figure}