Supplementary material

Interpretation of heavy metal speciation in sequential extraction using geochemical modelling

Yanshan Cui^{A,B} and Liping Weng^{B,C}

^AUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^BDepartment of Soil Quality, Wageningen University, PO Box 47, 6700 AA,

Wageningen, the Netherlands.

^CCorresponding author. Email: liping.weng@wur.nl

Table S1. NICA (Non-Ideal Competitive Adsorption)–Donnan model parameters for generic humic and fulvic acids^[1,2]

 V_D , Donnan volume; *I*, ionic strength; *b*, a constant; Q_{max} , site density on humic or fulvic acid; *p*, heterogeneity parameter of humic or fulvic acid; *n*, ion-specific non-ideality parameter; *K*, median affinity. Subscripts 1 and 2 respectively relate to the carboxylic and the phenolic type of sites on humic or fulvic acids

Generic humic acids									
b value in log $V_D = b \log I - b - 1 - 0.49$									
0 - 0	Carboxylic site								
Site density	3.1	5	2.55						
$Q_{\rm max} ({\rm mol}{\rm kg}^{-1})$									
Heterogeneity <i>n</i>	0.62	2	0.41						
Ion specific parameters	$\log K_1$	n_1	$\log K_2$	n_2					
Н	2.93	0.81	8.00	0.63					
Ca	-1.37	0.78	-0.43	0.75					
Mg	-0.6	0.77	0.6	0.59					
Al	-1.05	0.40	8.89	0.30					
Fe ^{III}	5.00	0.30	17.5	0.25					
Cu	2.23	0.56	6.85	0.34					
Cd	-0.20	0.73	2.37	0.54					
Zn	0.11	0.67	2.39	0.27					
Ni	-0.26	0.64	1.0	0.55					
Pb	1.26	0.69							
Generic fulvic acids									
<i>b</i> value in log $V_{\rm D} = b \log I - b - 1 - 0.57$									
Carboxylic site Phenolic site									
Site density Q_{max}	5.8	8	1.8	36					
(mol kg^{-1})	$(mol kg^{-1})$								
Heterogeneity p	0.59	9	0.70						
Ion specific parameters	$\log K_1$	n_1	$\log K_2$	n_2					
Н	2.34	0.66	8.60	0.76					
Ca	-2.17	0.85	-3.29	0.83					
Mg	-2.10	0.77	-2.40	0.59					
Al	-4.11	0.42	12.16	0.31					
Fe ^{III A}	4.0	0.25	20	0.19					
Cu	0.26	0.53	8.24	0.36					
Cd	-0.99	0.68	0.73	0.50					
Zn	-3.84	0.67	-0.73	0.61					
Ni	-2.07	0.65	2.03	0.53					
Pb	-1.22	0.60	6.87	0.70					

^AParameters from Vega and Weng.^[3]

Table S2. CD-MUSIC (charge distribution-multi-site complexation) model parameters of goethite^[4-7]

110 face: surface area: $4.5 \times 10^4 \text{ m}^2 \text{ kg}^{-1}$, FeOH^{-0.5} site: 3.0 nm^{-2} , Fe₃O^{-0.5} site: 3.0 nm^{-2} . 021 face: surface area: $5 \times 10^3 \text{ m}^2 \text{ kg}^{-1}$, FeOH^{-0.5} site: 3.75 nm^{-2} , Fe_hOH^{-0.5} site: 3.75 nm^{-2} . $C_1 = 1.02 \text{ Fm}^{-1}$; $C_2 = 5 \text{ Fm}^{-1}$. log*K*, affinity constant; site 1 and site 2, number and type of the site involved; 0-, 1- and 2plane, charge attributed to the corresponding electrostatic planes

Species parameters								
surface species	log K	site 1	site 2	0-plane	1-plane	2-plane		
FeOH ^{-0.5}	0	1FeOH ^{-0.5}		0	0	0		
$\text{FeOH}_2^{+0.5}$	9.2	$1 \text{FeOH}^{-0.5}$		1	0	0		
FeOHK ^{+0.5}	-1.0	$1 \text{FeOH}^{-0.5}$		0	0	1		
FeOH ₂ NO ₃ ^{-0.5}	8.2	$1 \text{FeOH}^{-0.5}$		1	0	-1		
$Fe_{3}O^{-0.5}$	0	$1 \text{Fe}_{3} \text{O}^{-0.5}$		0	0	0		
$Fe_3OH^{+0.5}$	9.2	$1 \text{Fe}_{3} \text{O}^{-0.5}$		1	0	0		
$Fe_3OK^{+0.5}$	-1.0	$1 \text{Fe}_{3} \text{O}^{-0.5}$		0	0	1		
Fe ₃ OHNO ₃ ^{-0.5}	8.2	$1 \text{Fe}_{3} \text{O}^{-0.5}$		1	0	-1		
Fe _h OH ^{-0.5}	0.0	$1 \mathrm{Fe_hOH}^{-0.5}$		0	0	0		
$\mathrm{Fe_hOH_2}^{+0.5}$	9.2	1Fe _h OH ^{-0.5}		1	0	0		
Fe _h OHK ^{+0.5}	-1.0	$1 \mathrm{Fe_hOH}^{-0.5}$		0	0	1		
Fe _h OH ₂ NO ₃ ^{-0.5}	8.2	$1 \mathrm{Fe_hOH}^{-0.5}$		1	0	-1		
FeOHCa ^{+1.5}	3.55	1FeOH ^{-0.5}		0.2	1.8	0		
(FeOH) ₂ Mg ⁺¹	4.52	$2\text{FeOH}^{-0.5}$		0.72	1.28	0		
(FeOH) ₂ MgOH ⁰	-6.78	$2\text{FeOH}^{-0.5}$		0.72	0.28	0		
$(Fe_hOH)_2Mg^{+1}$	4.52	$2 \mathrm{Fe}_{\mathrm{h}} \mathrm{OH}^{-0.5}$		0.72	1.28	0		
FeOPO ₃ ^{-2.5}	20.8	1FeOH ^{-0.5}		0.25	-2.25	0		
$(FeO)_2PO_2H^{-1}$	35.7	$2\text{FeOH}^{-0.5}$		0.9	-0.9	0		
$(\text{FeO})_2 \text{PO}_2^{-2}$	29.4	$2\text{FeOH}^{-0.5}$		0.39	-1.39	0		
$(Fe_hO)_2PO_2H^{-1}$	35.7	$2 \mathrm{Fe_hOH}^{-0.5}$		0.9	-0.9	0		
$(\mathrm{Fe_hO})_2\mathrm{PO_2}^{-2}$	29.4	$2 \mathrm{Fe_hOH}^{-0.5}$		0.39	-1.39	0		
FeOHCu ^{+1.5}	8.62	$1 \text{FeOH}^{-0.5}$		0.83	1.17	0		
FeOHCuOH ^{+0.5}	3.03	1FeOH ^{-0.5}		0.83	0.17	0		
Fe _h OHCu ^{+1.5}	8.62	$1 \mathrm{Fe_hOH}^{-0.5}$		0.83	1.17	0		
Fe _h OHCuOH ^{+0.5}	3.03	$1 \mathrm{Fe_hOH}^{-0.5}$		0.83	0.17	0		
$(FeOH)_2Cd^{+1}$	6.98	2FeOH ^{-0.5}		0.71	1.29	0		
$(FeOH)_2CdOH^0$	-2.94	$2\text{FeOH}^{-0.5}$		0.71	0.29	0		
$(Fe_hOH)_2Cd^{+1}$	6.98	$2Fe_hOH^{-0.5}$		0.71	1.29	0		
$(Fe_hOH)_2CdOH^0$	-0.32	$2\mathrm{Fe}_{\mathrm{h}}\mathrm{OH}^{-0.5}$		0.71	0.29	0		
$(FeOH)_2Pb^{+1}$	9.75	$2\text{FeOH}^{-0.5}$		1.15	0.85	0		
$(Fe_hOH)_2Pb^{+1}$	9.75	$2 Fe_h OH^{-0.5}$		1.15	0.85	0		
(FeOHFe ₃ O)Zn ⁺¹	8.01	$1 \text{FeOH}^{-0.5}$	$1 \text{Fe}_{3} \text{O}^{-0.5}$	0.83	1.17	0		
(FeOHFe ₃ O)ZnOH ⁰	-1.0	$1 \text{FeOH}^{-0.5}$	$1 \text{Fe}_{3} \text{O}^{-0.5}$	0.83	0.17	0		
$(Fe_hOH)_2Zn^{+1}$	6.63	$2 Fe_h OH^{-0.5}$		0.83	1.17	0		
(FehOH) ₂ ZnOH ⁰	-2.38	$2\mathrm{Fe_hOH}^{-0.5}$		0.83	0.17	0		

Table S3. Amounts of metal extracted in selective sequential extraction (SSE)

Sum/total strong acid is the ratio of the sum of metals extracted in the SSE to the metals extracted in strong acids. In some cases, this ratio is larger than 100 %, which can be caused by uncertainties in the measurement (especially at low metal concentrations) or by a higher extraction efficiency of the SSE compared to the strong acid extraction

Soil	Cd	Cu	Pb	Zn	Cd	Cu	Pb	Zn	Cd	Cu	Pb	Zn	
		Step 1 ($(mg kg^{-1})$		Step 2 (mg kg ^{-1})					Step 3 (mg kg ^{-1})			
1	9.7	0.1	7.2	191.5	1.7	1.3	11.6	48.0	1.9	6.0	43.4	155.1	
2	36.9	0.2	6.0	691.2	4.6	0.7	7.4	98.2	6.6	4.9	45.8	544.6	
3	0.6	0.2	3.8	37.3	0.3	1.9	7.8	11.0	0.1	3.6	17.5	39.2	
4	40.5	0.2	9.5	567.8	8.2	0.7	13.7	121.1	10.9	0.6	88.4	652.3	
5	57.8	1.1	16.1	697.8	6.4	2.9	12.1	85.1	15.5	16.6	144.2	925.4	
6	78.0	1.4	13.4	1102.5	6.9	4.1	12.9	118.4	21.0	23.2	182.2	1338.2	
7	0.2	5.1	0.7	5.2	0.0	44.3	5.4	1.5	0.0	27.0	12.1	4.0	
8	0.04	15.2	3.8	1.5	0.0	30.9	3.7	0.1	0.0	18.7	9.1	0.1	
9	0.6	0.2	6.8	30.6	0.1	1.1	4.9	6.6	0.1	0.9	21.0	93.4	
10	5.3	2.9	0.8	33.8	2.2	18.7	31.8	144.1	3.4	10.9	169.3	1563.3	
11	12.1	0.9	41.3	101.6	0.9	3.3	15.3	9.7	2.2	5.3	119.0	131.0	
12	0.4	0.3	0.3	8.2	0.2	2.4	1.4	2.6	0.2	2.2	7.9	22.8	
13	4.2	1.7	0.02	27.3	1.4	10.9	3.4	118.3	1.6	12.0	19.7	1869.1	
14	4.9	22.1	5.9	17.0	0.4	53.0	2.7	2.6	0.5	22.4	19.4	61.9	
15	11.9	3.9	644.8	204.0	1.1	13.8	71.3	24.2	1.6	11.8	329.3	602.9	
16	10.7	0.7	198.9	107.7	5.3	45.5	1068.9	920.1	3.0	4.9	1106.0	2605.4	
		Step 4 ($(mg kg^{-1})$			Residua	$l (mg kg^{-1})$		Sum/total strong acid $(\%)$				
1	0.4	9.8	14.5	49.6	6.1	6.9	14.5	153.6	103	94	94	97	
2	1.1	13.2	23.4	159.0	19.1	12.0	23.4	645.1	105	87	98	104	
3	0.1	9.2	10.2	7.1	1.5	6.2	10.2	42.2	96	98	115	102	
4	2.1	22.6	38.1	229.3	17.3	16.3	38.1	647.1	105	90	106	101	
5	2.7	66.4	58.6	273.3	25.2	55.3	58.6	833.7	106	87	118	93	
6	4.3	45.3	68.2	269.0	28.7	77.0	68.2	451.6	115	96	107	122	
7	0.0	21.5	3.7.7	1.7	0.0	15.4	3.7	0.2	145	90	130	135	
8	0.0	15.5	30	0.2	0.0	13.7	3.0	1.3	148	91	131	129	
9	0.0	12.5	11.0	24.0	0.3	15.7	11.0	91.3	102	117	117	124	
10	0.5	176.1	62.8	425.4	4.0	139.1	62.8	375.2	89	93	101	85	
11	0.4	26.6	35.9	67.1	5.1	11.1	35.9	127.4	101	100	96	88	
12	0.0	4.4	2.2	5.1	0.8	25.5	2.2	42.3	100	92	106	100	
13	0.3	59.8	6.2	258.9	1.5	42.9	6.2	164.5	84	86	93	119	
14	0.1	193.0	10.2	30.7	2.8	116.9	10.2	68.3	102	86	111	113	
15	0.8	69.0	125.2	528.4	4.7	61.6	125.2	753.7	95	109	101	102	
16	2.6	191.9	166.3	1298.0	14.0	125.4	166.3	1782.8	92	89	112	92	

and soluble re concentration in the inst time steps of the sequential extraction											
	CaCl ₂ -extraction	ion Step 1				Step 2			Step 3		
Soil	(soil : solution	(soil : solution				(soil : solution			(soil : solution		
	= 1 : 10)		= 1 : 8)			= 1 : 8)			= 1 : 20)		
	DOC	pН	DOC	Fe	pН	DOC	Fe	pН	DOC	Fe	
	$(mg L^{-1})$		$(mg L^{-1})$	$(mg L^{-1})$		$(mg L^{-1})$	$(mg L^{-1})$		$(mg L^{-1})$	$(mg L^{-1})$	
1	30.9	3.68	45.5	1.15	4.75	210	37.8	2.27	263	180	
2	46.5	3.82	68.6	1.94	4.71	400	89.3	2.39	129	369	
3	25.1	3.56	31.4	1.95	4.77	177	27.7	2.13	328	58.5	
4	49.7	3.72	65.9	1.81	4.65	240	46.7	2.44	180	283	
5	44.7	3.70	61.4	2.89	4.67	374	98.4	2.49	56.4	503	
6	51.0	3.81	71.8	2.66	4.65	402	98.3	2.57	57.8	576	
7	24.7	4.18	28.8	3.50	4.80	45.6	10.5	2.06	215	74.4	
8	33.2	3.15	44.5	5.95	4.80	74.5	18.9	1.98	224	71.1	
9	94.3	3.28	102	7.55	4.61	638	66.9	2.58	1197	186	
10	37.4	6.01	39.4	3.69	4.75	114	49.5	2.59	183	245	
11	22.3	3.34	32.1	3.93	4.71	413	97.6	2.40	192	271	
12	4.9	4.45	4.8	4.32	4.76	8.25	1.03	2.17	79.6	132	
13	22.9	6.35	28.1	4.64	5.17	43.6	11.1	2.50	141	129	
14	15.8	3.89	9.0	4.02	4.73	70.8	48.6	2.31	6.64	208	
15	29.1	3.53	22.5	2.90	4.77	28.6	25.7	2.25	88.8	211	
16	8.6	6.26	14.5	4.06	4.94	265	22.7	2.23	8.24	73.5	

Table S4. Dissolved organic carbon (DOC) concentration in CaCl₂ extraction and pH, DOC and soluble Fe concentration in the first three steps of the sequential extraction

Fig. S1. Metal fractionation based on multi-surface modelling. The calculation was conducted for the conditions of the 0.01 M CaCl₂ extraction using metals in HNO₃ extraction as the total amount of reactive metal. The total metal concentration (100 %) used in making this figure was based on the strong acids digestion (Table 2 in the main text). The difference between total metal in strong acids extraction and metal–HNO₃ was called non-reactive. Soluble refers to soluble metal in 0.01 M CaCl₂ extraction. Cd distribution in Soil 8 was not calculated because the very low Cd concentration present in the soil made the model input very unreliable.

Fig. S2. Model prediction of Cd, Cu and Zn speciation in the solid phase originally (as in the 0.01 M CaCl₂ suspension) and in Step 1 and 2 of selective sequential extraction (SSE) for four scenarios (I, II, III and IV) for the 'model' soil. (In this graph, the reference point for 100 % is the amount of reactive metal. The gap between the amount shown in the graph and 100 % is soluble metal or metal extracted).

To better illustrate the modelling results and effects of pH and metal loading, a model simulation was carried out for a 'model' soil, with SOM = 8 %, Fe-oxides = 2.7 % and clay = 10 %. The simulation was done for four scenarios: I, low pH and low metal loading; II, low pH and high metal loading; III, high pH and low metal loading; IV, high pH and high metal loading. The low and high pH is respectively $pH_{CaCl2} = 4.5$ and 6.5. The simulation was carried out for Cd, Cu and Zn. The low metal loading is equivalent to a total reactive metal content of 10 mg kg⁻¹ Cd, 20 mg kg⁻¹ Cu and 50 mg kg⁻¹ Zn, whereas it is 100 mg kg⁻¹ Cd, 200 mg kg⁻¹ Cu and 2000 mg kg⁻¹ Zn for the high metal loading. The calculation was made under the same conditions as in the 0.01 M CaCl₂, Step 1 and Step 2 extractions respectively. The dissolved organic carbon (DOC) concentration used in the calculation was respectively 20, 40 and 200 mg L⁻¹ for these three extractions. Based on the experience (Table S4), it was assumed that pH in Step 1 is 0.9 pH units lower than pH_{CaCl2} (i.e. pH = 3.6 or 5.6). For Step 2, the pH was fixed at 4.8 for all scenarios.

References

[1] C. J. Milne, D. G. Kinniburgh, W. H. Van Riemsdijk, E. Tipping, Generic NICA–Donnan model parameters for metal-ion binding by humic substances. *Environ. Sci. Technol.* **2003**, *37*, 958. doi:10.1021/es0258879

[2] C. J. Milne, D. G. Kinniburgh, E. Tipping, Generic NICA–Donnan model parameters far proton binding by humic substances. *Environ. Sci. Technol.* **2001**, *35*, 2049. <u>doi:10.1021/es000123j</u>

[3] F. A. Vega, L. Weng, Speciation of heavy metals in River Rhine. *Water Res.* 2013, 47, 363. doi:10.1016/j.watres.2012.10.012

[4] T. Hiemstra, W. H. Van Riemsdijk, A surface structural approach to ion adsorption: the charge distribution (CD) model. *J. Colloid Interface Sci.* **1996**, *179*, 488. <u>doi:10.1006/jcis.1996.0242</u>

[5] T. Hiemstra, W. H. Van Riemsdijk, Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. *J. Colloid Interface Sci.* **1999**, *210*, 182. <u>doi:10.1006/jcis.1998.5904</u>

[6] L. P. Weng, E. J. M. Temminghoff, W. H. van Riemsdijk, Contribution of individual sorbents to the control of heavy metal activity in sandy soil. *Environ. Sci. Technol.* **2001**, *35*, 4436. <u>doi:10.1021/es010085j</u>

[7] T. Hiemstra, J. Antelo, R. Rahnemaie, W. H. Van Riemsdijk, Nanoparticles in natural systems: I. The effective reactive surface area of the natural oxide fraction in field samples. *Geochim. Cosmochim. Acta* **2010**, 74, 41. <u>doi:10.1016/j.gca.2009.10.018</u>