Supplementary material

Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa


A Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China.

B School of Life and Environmental Sciences, Deakin University, Burwood, Vic. 3125 Australia.

C Centre for Regional and Rural Futures, Deakin University, Burwood, Vic. 3125, Australia

D Corresponding author. Email: leigha@deakin.edu.au
Fig S1. Phylogenetic tree showing the evolutionary distances and clustering of natural resistance-associated macrophage protein (NRAMP) transporters from *A. thaliana* (NP_178198.1), *N. tabacum* (BAH66919.1), *B. juncea* (ACL83360.1), *S. torvus* (BAM34952.1), *T. urartu* (EMS65084.1), *T. cacao* (EOY26042.1) and *P. trichocarpa* (ERP65083.1) with *S. nigrum* L. (AEA86280.1) and *B. rapa* pikenensis (ACP30561.1).
Fig S2. Consensus nucleotide and peptide sequences for natural resistance-associated macrophage protein (NRAMP) transporters of *A. thaliana* (NP_178198.1), *N. tabacum* (BAH66919.1), *B. juncea* (ACL83360.1), *S. torvum* (BAM34952.1), *T. urartu* (EMS65084.1), *T. cacao* (EOY26042.1) and *P. trichocarpa* (ERP65083.1) with *S. nigrum* L. (AEA86280.1) and *B. rapa* pikenensis (ACP30561.1).