Supplementary material

Photon flux dependence on solute environment in water ices

Alexander S. McFall^A and Cort Anastasio^{A,B}

^AUniversity of California Davis, Department of Land, Air and Water Resources, 1 Shields Avenue,

Davis, CA 95616, USA.

^BCorresponding author. Email: canastasio@ucdavis.edu

Fig. S1. Schematic of the gas deposition system used for surface deposition experiments. The system was preloaded with 0.4 g of solid 2NB and pure nitrogen (Praxair, 99.998 %) was passed through the system at a rate of 1.25 L min⁻¹, delivering a thawed sample equivalent of 1.0 μ M 2NB s⁻¹ for a volume of 1.0 mL. The chamber was covered in foil to prevent any NBA production from ambient light.

Fig. S2. Base-10 M absorptivities of 2NB and NBA. The 2NB result is from a 100-µM solution of 2NB prepared in Milli-Q water and measured in a Shimadzu UV2501PC spectrophotometer using a 1-cm quartz cuvette. The NBA result is from the same sample after simulated sunlight illumination for 35 min to completely convert the 2NB.

Fig. S3. Average j(2NB) values for liquid and ice experiments in each container type. Error bars represent $\pm 1 \sigma$.

1mL Teflon Beakers

Fig. S4. Day-to-day variability in j(2NB) measurements for aqueous and ice experiments for one of the sample containers – 1-mL Teflon beakers.

Fig. S5. Normalised light output of our illumination system compared with the normalised Tropospheric Ultraviolet and Visible (TUV) radiation model output for a solar zenith angle of 62° . Data was normalised such that the area under each curve was equal to 1.

Derivation of kinetic model for photoproduct quantitation

Because 2NB forms only one photoproduct (NBA), we can model the amount of photoproduct formed after a certain time t by simple manipulation of:

$$\frac{d[\text{NBA}]}{dt} = j(2\text{NB})[2\text{NB}]_0 e^{-j(2\text{NB})_t}$$

Integrating this equation, treating j(2NB) and $[2NB]_0$ as constants of each experiment, we find

$$[NBA]_{t} = [2NB]_{0}(1 - e^{-j(2NB)_{t}})$$

where $[NBA]_t$ is the amount of photoproduct formed after a given time t.

HPLC parameters

Manufacturer: Shimadzu

Liquid Chromatograph: LC-20AB

Autosampler: SFL-20A

Detector: SPD-M20A (photo diode array)

Column: Thermo Scientific BetaBasic 18, 250×3 mm, 5-µm grain size

Eluent: 60: 40 acetonitrile : water, acidified to pH 2 with perchloric acid

Flow rate: 0.7 mL min⁻¹

Run time: 4.5 min

Table S1. Base-10 molar absorptivities for aqueous 2-nitrosobenzoic acid (NBA) at 298 K Base-10 molar absorptivities (ε , M⁻¹ cm⁻¹) were determined from the baseline-corrected absorbance of a single 100 µM 2NB aqueous solution allowed to undergo complete photodegradation (and conversion to NBA) under simulated sunlight (t = 35 min)

λ (nm)	3		λ (nm)	3	_	λ (nm)	3	-	λ (nm)	3
405	69		385	328	_	365	1004	-	345	1994
404	76		384	346		364	1050		344	2074
403	82		383	365		363	1091		343	2130
402	91		382	395		362	1137		342	2212
401	95		381	427		361	1181		341	2271
400	101		380	443		360	1230		340	2346
399	110		379	479		359	1272		339	2422
398	124		378	511		358	1309		338	2526
397	142		377	543		357	1380		337	2609
396	148		376	574		356	1436		336	2732
395	156		375	617		355	1471		335	2848
394	164		374	642		354	1523		334	2962
393	187		373	679		353	1565		333	3103
392	202		372	716		352	1636		332	3259
391	227		371	752		351	1663		331	3422
390	224		370	789		350	1726		330	3563
389	247		369	836		349	1775		329	3737
388	274		368	867		348	1844		328	3942
387	288		367	913		347	1886		327	4121
386	311	_	366	964		346	1929	_	326	4317

Environ. Chem. **2016** doi:10.1071/EN15199_AC

λ (nm)	3	λ (nm)	3	-	λ (nm)	3	λ (nm)	3
325	4500	292	5001	-	259	2328	226	5383
324	4714	291	4978		258	2257	225	5675
323	4917	290	4967		257	2197	224	5904
322	5125	289	4955		256	2124	223	6099
321	5324	288	4947		255	2068	222	6276
320	5509	287	4927		254	2001	221	6445
319	5704	286	4917		253	1962	220	6515
318	5869	285	4908		252	1914	219	6619
317	6012	284	4875		251	1876	218	6703
316	6168	283	4815		250	1852	217	6786
315	6291	282	4761		249	1841	216	6918
314	6408	281	4662		248	1817	215	7042
313	6470	280	4578		247	1806	214	7196
312	6538	279	4477		246	1802	213	7344
311	6581	278	4383		245	1824	212	7526
310	6605	277	4282		244	1826	211	7737
309	6588	276	4187		243	1848	210	7953
308	6527	275	4071		242	1884	209	8157
307	6495	274	3952		241	1914	208	8352
306	6407	273	3826		240	1974	207	8636
305	6349	272	3711		239	2024	206	8890
304	6252	271	3604		238	2104	205	9176
303	6122	270	3494		237	2207	204	9454
302	6001	269	3385		236	2329	203	9814
301	5848	268	3266		235	2504	202	10122
300	5722	267	3155		234	2692	201	10362
299	5605	266	3050		233	2936	200	10454
298	5477	265	2935		232	3212		
297	5379	264	2842		231	3565		
296	5281	263	2728		230	3919		
295	5191	262	2630		229	4307		
294	5091	261	2529		228	4689		
293	5042	260	2425		227	5048		