Supplementary material

When are metal complexes bioavailable?

Chun-Mei Zhao, A,B Peter G.C. Campbell^C and Kevin J. Wilkinson^{D,E}

^ASchool of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China.

^BGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,

Guangzhou 510275, P.R. China.

^CInstitut National de la Recherche Scientifique – Eau, Terre et Environnement (INRS-ETE), 490 Rue de la

Couronne, Quebec, QC, G1K 9A9, Canada.

^DBiophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal,

CP 6128 Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.

^ECorresponding author: Email: kj.wilkinson@umontreal.ca

Table S1. Representative examples of some exceptions to the classic models: passive diffusion by lipophilic complexes

DDC,	diethyldithiocarbamate;	NTA, nitrilotria	acetic acid; X	XANT, ethylxanthate
	2	,	· · · · · · · · · · · · · · · · · · ·	, ,

	Organisms	Metal (M)	Ligands (M)	Medium	Exposure time	Endpoints	Metal complex	Comments	Ref.
Cladoceran	Daphnia magna	[Cd] 64 nM	DDC	Natural freshwater; pH 7.5	2 days	Cd bioaccumulation	Cd–DDC	DDC-enhanced Cd bioaccumulation	[1]
Marine diatom	Nitzschia closterium	[Cu] 79 nM	Phenanthroline-type (2,9-dmp); 8- hydroxyquinoline; 1-(2- pyridylazo)-2- naphthol; 1-(2- thiazolylazo)-2- naphthol	Seawater; pH 8.2	3 days	Growth rate; photosynthesis	Cu–L	Toxicity index is higher for hydrophobic complexes than hydrophilic complexes	[2]
Marine diatom	Thalassiosira weissflogii	[Cu] 15 nM, [Cd] 9 nM, [Pb] 5 nM	Sulfoxine; oxine; DDC	UV seawater; pH 8	5 h	Metal uptake	$\begin{array}{c} Cu(Ox)_{2}^{0};\\ Cu(DDC)_{2}^{0};\\ Cd(DDC)_{2}^{0};\\ Pb(DDC)_{2}^{0}\end{array}$	$M(DDC)_2^0$ uptake is much higher than M' and (MEDTA) ^{2–}	[3]
Marine diatom	Thalassiosira weissflogii	[Cu] 5 nM, [Zn] 3.4 μM, [Pb] 5 nM	Dithiocarbamates: Ziram 3.3 µM; Maneb 2 µM	UV seawater; pH 8	5 h	Metal uptake	Cu–L	Zn, Cu and Pb content in cell was enhanced in the presence of Ziram and Maneb	[4]
Marine algae	Synechococcus clone DC2, Amphidinium carterae, Chrysochromulina polylepis, Ditylum brightwelli, Prorocentrum micans	[Cu] 10 and 400 nM	Oxine; NTA	Natural seawater; pH	2.5 h	Cellular metal content	Cu–oxine	Cellular Cu content is significantly higher in the presence of Cu– oxine than Cu–NTA	[5]
Freshwater alga	Pseudokirchneriella subcapitata	[Cd] 0.38 nM	[DDC] 1 µM	Synthetic freshwater; pH ~5.5– 7.0	<40 min	Metal uptake rate	[Cd(DDC) ₂] ⁰	The uptake of lipophilic metal complex is pH- dependent	[6]

Environ. Chem. **2016** doi:10.1071/EN15205_AC

	Organisms	Metal (M)	Ligands (M)	Medium	Exposure time	Endpoints	Metal complex	Comments	Ref.
Freshwater alga	Pseudokirchneriella subcapitata; Chlamydomonas reinhardtii; Chlorella fusca	[Cd] 0.38 nM	[DDC] 1 μM; XANT, 100 μM	Synthetic freshwater; pH 5.5 and 7.0	30 min	Metal uptake rate	[Cd(DDC) ₂] ⁰ ; [Cd(XANT) ₂] ⁰	The uptake of lipophilic metal complex is pH- dependent	[7]
Marine diatom	Thalassiosira weissflogii	[Hg] ~0– 10 nM	[Cl] ~10 µM–0.32 M	Synthetic seawater; pH ~4–8	4 h	Metal uptake rate; growth rate	[HgCl ₂] ⁰ ; [CH ₃ HgCl] ⁰	Hg bioaccumulation is dependent on [HgCl ₂]	[8]

Table S2. Representative examples of some exceptions to the classic models: metal uptake through ligand transport system

NTA, nitrilotriacetic acid

Organisms		Metal (M)	Ligands (M)	Medium	Exposure time	Endpoints	Comments	Ref.
Freshwater alga	Pseudokirchneriella subcapitata	[Cd ²⁺] ~9 nM– 0.87 μM; [Zn ²⁺] ~23 nM–2.04 μM	Citrate 100 μM; NTA 100 μM	Synthetic freshwater; pH 7.3	72 h for toxicity; 6 min for uptake	Growth rate; cell density; metal uptake; ligand uptake	Cd was accidentally transported with citrate through citrate transporter at the rate of one fourth that of citrate	[9]
Freshwater alga	Chlamydomonas reinhardtii	[Ag ⁺] 10 and 114 nM	[Cl ⁻] 0.05 and 4 mM; [(S ₂ O ₃) ^{2–}] 114 nM; [(SO ₄) ^{2–}] 81 μM	Synthetic freshwater; pH 7.0	≤1 h	Metal uptake	Ag is internalised through $S_2O_3^{2-}/SO_4^{2-}$ transport system	[10]
Freshwater alga	Chlamydomonas reinhardtii; Pseudo- kirchneriella subcapitata	[Ag] ~10–104 nM	$[(S_2O_3)^{2-}] \sim 11.4-$ 114 nM	Synthetic freshwater; pH 7.0	4 days	Growth rate; uptake rate	Ag is internalised through $S_2O_3^{2-}$ transport system	[11]
Bacterium	Arthrobacter sp. JM018	[Zn] ~0–250 μM	[PO ₄ ^{3–}] ; [glycerol-3- phosphate] 33 μM	Synthetic freshwater; pH 6, 7 and 8	150 h	Growth rate	ZnHPO ₄ ⁰ (aq) is taken up through Pit inorganic phosphate transport system	[12]

Table S3. Representative examples of some exceptions to the classic models: ternary complex formation

DOM, dissolved organic matter; EM, electrophoretic mobility; SRHA, Suwannee River humic acid; SRFA, Suwannee River fulvic acid; AA,

alginic acid; PGA, polygalacturonic acid; XAN, xanthan; SUC, succinoglycan; MES, 2-(N-morpholino)ethanesulfonic acid; GSH, glutathione;

PC2, phytochelatin-2; His	, histidine; DFB,	desferrioxamine	-B; IDA,	iminodiacetic acid
---------------------------	-------------------	-----------------	----------	--------------------

	Organisms	Metal (M)	Ligands (M)	Medium	Exposure time	Endpoints	Ternary complex	Comments	Ref.
Juvenile fish	Salmo salar	[Al] ~5– 8 μM; inorganic [Al] ~0.8– 4 μM	[F ⁻] 1.5 μM	Synthetic freshwater pH ~4.5– 4.9	7 days	Al uptake in gill	<f-al-r></f-al-r>	Mortality increased from 50 to 100 % at ~4.2– 9.4 μ M [AlF _x] (pH 4.5)	[13]
Gill cells of large- mouth bass	Micropterus salmoides	[Al] ~0– 50 μM	[F ⁻] ~0–10 μM; DOM ~0–10 mg L ⁻¹	Synthetic freshwater pH 4.5		EM	<f-al-r>; <al-dom- gill cell> or <dom-al- gill cell></dom-al- </al-dom- </f-al-r>	At constant [Al] 10μ M, increasing [F] did not increase EM to the extent predicted by [Al ³⁺]	[14]
Green alga	Chlorella kesslerii	[Pb] ~0.5 μM– 0.1 mM	10 mg L ⁻¹ each for the SRHA, the SRFA, AA, PGA, XAN, SUC	Synthetic freshwater MES; pH 6	≤1 h	Pb uptake	<lpb–r> and <pbl–r></pbl–r></lpb–r>	<lpb–r> contributes to uptake when K_s/K_{SPbL}K_{PbL}[L] << 1</lpb–r>	[15]
Green alga	Chlorella kesslerii	[Cd ²⁺], [Cu ²⁺] and [Pb ²⁺] ~10 ⁻⁹ – 10 ⁻⁵ M	Citrate 5 mM; humic acid 10 mg L^{-1}	Synthetic freshwater MES; pH 6	35 min	Cumulative mortality; Al uptake in gill;	<pb-ha- Cell></pb-ha- 	95 to 57 % Pb in cell is from <pb–ha–cell> when [Pb²⁺] ranging from nanomolar to micromolar levels</pb–ha–cell>	[16]
Green alga	Chlorella kesslerii	1 μM for Cd, Cu and Pb	Citrate 50 μ M to 0.3 mM; humic acid 10 mg L ⁻¹	Synthetic freshwater MES; pH 6	1 h	Metal uptake	<ha-pb-r></ha-pb-r>	The contribution of ternary complex is dependent on the concentration of ternary complex	[17]
Algae diatom; coccolitho phore	Thalassiosira weissflogii; Emiliania huxleyi	[Zn] ~0– 10 μM	Cysteine ~0.5–40 μM; GSH 22 μM, PC2 1 μM, His 40 μM, DFB 8 μM	Filtered Gulf Stream seawater; pH ~7.9– 8.2	2-4 h	Zn uptake rate	<cys-zn-r></cys-zn-r>	Metal complex with 1 : 1 ratio is the substrate for ternary complex formation	[18]
Green alga	Chlamydomonas reinhardtii	[Sc] ~0.2 nM– 2 μM	[OH] ~0.3 nM–0.8 μM	Synthetic freshwater, pH ~4.5– 7.9	≤1 h	Sc internalisation flux	<oh-sc-r></oh-sc-r>	The ternary complex contributed to Sc uptake at $pH > 6.5$	[19]

Environ. Chem. **2016** doi:10.1071/EN15205_AC

	Organisms	Metal (M)	Ligands (M)	Medium	Exposure time	Endpoints	Ternary complex	Comments	Ref.
Wheat cultivar	<i>Triticum aestivum</i> L.	[Zn ²⁺] ~5 nM–20 μM	Citrate 0.45 and 1.5 mM; L-histidine 0.98 and 1.3 mM	Synthetic freshwater, pH 7.2	3 h	Zn influx	<histidine- Zn-R></histidine- 	Zn-histidine formed ternary complex with transporters	[20]
Green alga	Chlamydomonas reinhardtii	[Tm] ~1 nM–100 μM	Citric acid, malic acid, NTA, diglycolic acid, malonic acid and IDA	Synthetic freshwater MES, pH 6	1 h	Tm internalisation flux	<l-tm-r></l-tm-r>	The contribution of ternary complex to metal uptake is dependent on the concentration of dominant metal species	[21]

Table S4. Representative examples of some exceptions to the classic models: contribution from the dissociation of labile complex

HEPES, N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid); EDDA, N,N-ethylenediaminediacetate; HEDTA: N-(2-

hydroxyethyl)ethylenediamine-N,N',N'-triacetate; EGTA: ethylene-bis-(oxyethylenenitrilo)-tetraacetate; CDTA: trans-1,2-cyclohexyldiamine-

N,N,N',N'-tetraacetate; MES, 2-(N-morpholino)ethanesulfonic acid

	Organisms	Metal (M)	Ligands (M)	Medium	Exposure time	Endpoints	Metal conc. for observed diffusion limitation	Lability of complex	Comments	Ref.
Algae	Chlamydomonas reinhardtii	[Ag ⁺] ~1–25 nM	[Cl] ~5 µM–50 mM	Synthetic freshwater; pH 7	≤1 h	Ag uptake	Limited diffusion at $[Ag^+] \le 10 \text{ nM}$	AgCl ⁰ , (AgCl ₂) ⁻	Fast Ag uptake by algae	[22]
	Chlamydomonas reinhardtii	[Pb] ~0.01– 0.75 μM; [Cu] ~0.015–0.5 μM	Dissolved inorganic carbon ~0–4 mM	Synthetic freshwater; pH 7	35 min	Uptake flux	Limited diffusion at $[Pb^{2+}] \le 0.1$ μM	PbCO ₃ labile	Fast Pb uptake by algae	[23]
	Chlorella kesslerii	[Zn] 10 pM and 1 nM for culture; ~4 pM– 1 mM for exposure	NTA (5–400 μM); Tiron (50–500 μM)	Synthetic freshwater (HEPES); pH 7	25 min	Uptake flux	Limited diffusion at $[Zn^{2+}] \le 20 \text{ pM}$ for algae grown at 10 pM Zn	ZnNTA inert	Increased Zn uptake caused by more binding sites for algae in Zn deficient media	[24]
	Periphyton	$[Cu^{2+}] \sim 10^{-16.5} - 10^{-14.5} \text{ M};$	NTA	Natural freshwater; pH 8.4	2 days	Cu and Zn uptake	Limited diffusion at $[Cu^{2+}] \le 1.9 \times 10^{-15} \text{ M}$	Cu complexes weaker than CuNTA are labile	Cu content is in proportion to weakly complexed Cu	[25]
Macro- alga	Ceramium tenuicorne	[Cu ²⁺] ~10 ⁻¹⁵ – 10 ⁻¹² M	Nordic fulvic acid ~2– 4 mg L ⁻¹ ; salicylaldoxime (SA)	Synthetic seawater; pH 8	7 days	EC50 and Cu uptake	Limited diffusion at [Cu ²⁺] ~0.1– 0.8 pM	Weakly bound Cu is labile	The diffusion flux of weakly bound Cu is comparable with Cu uptake flux in the presence of fulvic acid	[26]
Plant	Spinach Spinacia oleracea	[Cd] ~1 nM– 100 µM; [Cd ²⁺] 1nM	EDDA (100 μM); NTA (100–3000 μM); HEDTA (3.0–280 μM); EDTA (100 μM); EGTA (5.9–500 μM); CDTA (1.4–138 μM)	Synthetic freshwater (MES); pH 6	4 h	Cd uptake	Limited diffusion at [Cd ²⁺] 1 nM (uptake increased in stirred medium)	Fully labile: Cd–EDDA and Cd– NTA; inert: Cd–EGTA and Cd– CDTA	At constant [Cd ²⁺] 1 nM, Cd uptake is dependent on the lability of Cd complexes	[27]

Environ. Chem. **2016** doi:10.1071/EN15205_AC

©CSIRO 2016

	Organisms	Metal (M)	Ligands (M)	Medium	Exposure time	Endpoints	Metal conc. for observed diffusion limitation	Lability of complex	Comments	Ref.
	Spinach Spinacia oleracea L.; Tomato Lycopersicon esculentum L.	[Cu] 2 and 5 μM; [Zn] 1, 10 and 100 μM;	NTA 1.1 and 1.9 mM; HEDTA ~83–183 μM; EDTA 45 and 110 μM; CDTA ~129–229 μM Chelex resin	Synthetic freshwater; pH 6	18 days	Cu and Zn bioaccumul ation	Limited diffusion at $[Zn^{2+}] \le 10 \text{ nM}$	CuNTA > CuHEDTA > CuEDTA > CuCDTA	Enhanced uptake by Zn–L is related to dissociation rate constant of metal complex	[28]
	Durum wheat Triticum turgidum	[Cu ²⁺] ~0.29 pM– 5.5 mM	NTA	Synthetic freshwater; pH 6	2 h	Cd bioaccumul ation	Limited diffusion at $[Cu^{2+}] \sim 0.1 - 1$ nM; $[Cd^{2+}] \le 0.1$ nM	Not mentioned	Cu–NTA enhanced Cu uptake 6-fold for $[Cu^{2+}] \sim 0.1 \text{ nM}$ $-0.1 \mu \text{M}$	[29]
	Wheat Triticum aestivum	[Zn ²⁺] 15 nM	NTA; EDTA	Synthetic freshwater (MES); pH 6	8 h	Zn uptake in root	Limited diffusion at $[Zn^{2+}] \le 0.1$ μM	Zn–NTA labile; Zn– EDTA inert	The contribution from Zn labile complex is related to dissociation rate constant	[30]
Bivalve	Mussel Mytilus edulis	[Zn ²⁺] ~0.01 nM–6 μM	Citrate; NTA; EDTA; Glycine	Synthetic seawater; pH 6	24 h	Zn uptake in gills	$\begin{array}{l} \mbox{Limited diffusion} \\ \mbox{at } [Zn^{2+}] \leq 0.1 \\ \mbox{μM$} \end{array}$	Zn–Gly labile; Zn– Cit labile; Zn–NTA inert; Zn– EDTA inert		[31]

References

[1] J. E. Poldoski, Cadmium bioaccumulation assays. Their relationship to various ionic equilibria in Lake Superior water. *Environ. Sci. Technol.* **1979**, *13*, 701. doi:10.1021/es60154a015

[2] T. M. Florence, J. L. Stauber, Toxicity of copper complexes to the marine diatom *Nitzschia closterium*. *Aquat. Toxicol.* **1986**, *8*, 11. <u>doi:10.1016/0166-445X(86)90069-X</u>

[3] J. T. Phinney, K. W. Bruland, Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom *Thalassiosira weissflogii*. *Environ. Sci. Technol.* **1994**, *28*, 1781. <u>doi:10.1021/es00060a006</u>

[4] J. T. Phinney, K. W. Bruland, Trace metal exchange in solution by the fungicides Ziram and Maneb (dithiocarbamates) and subsequent uptake of lipophilic organic zinc, copper and lead complexes into phytoplankton cells. *Environ. Toxicol. Chem.* **1997**, *16*, 2046. <u>doi:10.1002/etc.5620161009</u>

[5] P. L. Croot, B. Karlson, J. T. van Elteren, J. J. Kroon, Uptake of ⁶⁴Cu–oxine by marine phytoplankton. *Environ. Sci. Technol.* **1999**, *33*, 3615. <u>doi:10.1021/es9807901</u>

[6] A. Boullemant, B. Vigneault, C. Fortin, P. G. C. Campbell, Uptake of neutral metal complexes by a green alga: influence of pH and humic substances. *Aust. J. Chem.* **2004**, *57*, 931. <u>doi:10.1071/CH04093</u>

[7] A. Boullemant, M. Lavoie, C. Fortin, P. G. C. Campbell, Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pH. *Environ. Sci. Technol.* **2009**, *43*, 3308. doi:10.1021/es802832u

[8] R. P. Mason, J. R. Reinfelder, F. M. M. Morel, Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. *Environ. Sci. Technol.* **1996**, *30*, 1835. <u>doi:10.1021/es950373d</u>

[9] O. Errecalde, M. Seidl, P. G. C. Campbell, Influence of a low-molecular-weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga *Selenastrum capricornutum*: an exception to the free-ion model. *Water Res.* **1998**, *32*, 419. <u>doi:10.1016/S0043-1354(97)00282-0</u>

[10] C. Fortin, P. G. C. Campbell, Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake. *Environ. Sci. Technol.* **2001**, *35*, 2214. <u>doi:10.1021/es0017965</u>

[11] V. P. Hiriart-Baer, C. Fortin, D.-Y. Lee, P. G. C. Campbell, Toxicity of silver to two freshwater algae, *Chlamydomonas reinhardtii* and *Pseudokirchneriella subcapitata*, grown under continuous culture conditions: Influence of thiosulphate. *Aquat. Toxicol.* **2006**, *78*, 136. <u>doi:10.1016/j.aquatox.2006.02.027</u>

[12] J. G. Moberly, A. Staven, R. K. Sani, B. M. Peyton, Influence of pH and inorganic phosphate on toxicity of zinc to *Arthrobacter* sp. isolated from heavy-metal-contaminated sediments. *Environ. Sci. Technol.* **2010**, *44*, 7302. doi:10.1021/es100117f

[13] K. J. Wilkinson, P. G. C. Campbell, P. Couture, Effect of fluoride complexation on aluminium toxicity towards juvenile Atlantic salmon (*Salmo salar*). *Can. J. Fish. Aquat. Sci.* **1990**, *47*, 1446. doi:10.1139/f90-163

[14] K. J. Wilkinson, P. M. Bertsch, C. H. Jagoe, P. G. C. Campbell, Surface complexation of aluminium on isolated fish gill cells. *Environ. Sci. Technol.* **1993**, *27*, 1132. <u>doi:10.1021/es00043a012</u>

[15] C. Lamelas, K. J. Wilkinson, V. I. Slaveykova, Influence of the composition of natural organic matter on Pb bioavailability to microalgae. *Environ. Sci. Technol.* **2005**, *39*, 6109. <u>doi:10.1021/es050445t</u>

[16] C. Lamelas, V. I. Slaveykova, Comparison of Cd^{II}, Cu^{II}, and Pb^{II} biouptake by green algae in the presence of humic acid. *Environ. Sci. Technol.* **2007**, *41*, 4172. doi:10.1021/es063102j

[17] C. Lamelas, J. P. Pinheiro, V. I. Slaveykova, Effect of humic acid on Cd^{II} , Cu^{II} , and Pb^{II} uptake by freshwater algae: kinetic and cell wall speciation considerations. *Environ. Sci. Technol.* **2009**, *43*, 730. doi:10.1021/es802557r

[18] L. Aristilde, Y. Xu, F. M. M. Morel, Weak organic ligands enhance zinc uptake in marine phytoplankton. *Environ. Sci. Technol.* **2012**, *46*, 5438. <u>doi:10.1021/es300335u</u>

[19] A. Crémazy, P. G. C. Campbell, C. Fortin, The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above: possible role of hydroxospecies. *Environ. Sci. Technol.* **2013**, *47*, 2408. <u>doi:10.1021/es3038388</u>

[20] A. Gramlich, S. Tandy, E. Frossard, J. Eikenberg, R. Schulin, Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role? *J. Agric. Food Chem.* **2013**, *61*, 10409. <u>doi:10.1021/jf401117d</u>

[21] C.-M. Zhao, K. J. Wilkinson, Biotic ligand model does not predict the bioavailability of rare earth elements in the presence of organic ligands. *Environ. Sci. Technol.* **2015**, *49*, 2207. <u>doi:10.1021/es505443s</u>

[22] C. Fortin, P. G. C. Campbell, Silver uptake by the green alga *Chlamydomonas reinhardtii* in relation to chemical speciation: Influence of chloride. *Environ. Toxicol. Chem.* **2000**, *19*, 2769. doi:10.1002/etc.5620191123

[23] P. Sánchez-Marín, C. Fortin, P. G. C. Campbell, Copper and lead internalisation by freshwater microalgae at different carbonate concentrations. *Environ. Chem.* **2013**, *10*, 80. <u>doi:10.1071/EN13011</u>

[24] C. S. Hassler, K. J. Wilkinson, Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by *Chlorella kesslerii. Environ. Toxicol. Chem.* **2003**, *22*, 620. doi:10.1002/etc.5620220322

[25] S. Meylan, R. Behra, L. Sigg, Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study. *Environ. Sci. Technol.* **2004**, *38*, 3104. doi:10.1021/es034993n

[26] E. Ytreberg, J. Karlsson, S. Hoppe, B. Eklund, K. Ndungu, Effect of organic complexation on copper accumulation and toxicity to the estuarine red macroalga *Ceramium tenuicorne*: a test of the free ion activity model. *Environ. Sci. Technol.* **2011**, *45*, 3145. <u>doi:10.1021/es1039166</u>

[27] F. Degryse, E. Smolders, R. Merckx, Labile Cd complexes increase Cd availability to plants. *Environ. Sci. Technol.* **2006**, *40*, 830. doi:10.1021/es050894t

[28] F. Degryse, E. Smolders, D. R. Parker, Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. *Plant Soil* **2006**, *289*, 171. doi:10.1007/s11104-006-9121-4

[29] P. M. C. Antunes, B. A. Hale, The effect of metal diffusion and supply limitations on conditional stability constants determined for durum wheat roots. *Plant Soil* 2006, 284, 229. <u>doi:10.1007/s11104-006-</u>0035-y

[30] P. Wang, D. M. Zhou, X. S. Luo, L. Z. Li, Effects of Zn complexes on zinc uptake by wheat (*Triticum aestivum*) roots: a comprehensive consideration of physical, chemical and biological processes on biouptake. *Plant Soil* **2009**, *316*, 177. <u>doi:10.1007/s11104-008-9769-z</u>

[31] S. Jansen, R. Blust, H. P. Van Leeuwen, Metal speciation dynamics and bioavailability: Zn^{II} and Cd^{II} uptake by mussel (*Mytilus edulis*) and carp (*Cyprinus carpio*). *Environ. Sci. Technol.* **2002**, *36*, 2164. doi:10.1021/es010219t