10.1071/EN18035_AC

©CSIRO 2018

Environmental Chemistry 2018, 15(4), 236-245

Supplementary Material

Photo-generation and interactive reactions of three reactive species in Seto Inland Sea, Japan

Adeniyi Olufemi Adesina,^A Adebanjo Jacob Anifowose,^{A,B} Kazuhiko Takeda^A and Hiroshi

Sakugawa^{A,C}

^AGraduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-

Hiroshima, 739-8521, Japan.

^BPresent address: Department of Chemical Sciences, Osun State University, P.M.B. 4494,

Osogbo, Nigeria.

^CCorresponding author. Email: <u>hsakuga@hiroshima-u.ac.jp</u>

Fig. S1. Sampling stations in the Seto Inland Sea, Japan are represented as round spots on the map. Identification numbers for the stations are prefixed with "ST".

Fig. S2. Correlation between photochemical generation rate of O_2 .⁻ *and DOC concentration.*

Fig. S3. Plot of CDOM absorbance versus O_2 .⁻ *photochemical generation rates*

Fig. S4. Correlation between photochemical generation rate of OH and DOC concentration.

Fig. S5. Plot of CDOM absorbance versus •OH photochemical generation rates.

Fig. S6. Correlation between NO· *radical generation rates and NO*² *concentrations*

Fig. S7. Correlation between ·OH radical generation rates and NO₂⁻ concentrations

Fig. S8. Plots of NO₂ and DOC concentrations versus salinity values.