10.1071/EN18057_AC ©CSIRO 2018 Environmental Chemistry 2018, 15(5), 286-295

Supplementary Material

Organo-montmorillonites for efficient and rapid water remediation: sequential and simultaneous adsorption of lead and bisphenol A

Chongmin Liu,^{A,B,C,D} *Pingxiao Wu*,^{A,B,C,D,E,F} *Lytuong Tran*,^{A,B} *Nengwu Zhu*^{A,B} *and Zhi Dang*^{A,B}

^ACollege of Environment and Energy, South China University of Technology, Guangzhou 510006, China.

^BThe Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.

^cGuangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China.

^DGuangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.

^EGuangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, China.

^FCorresponding author. Email: pppxwu@scut.edu.cn

	Mt		
Elements	Mass ratio (wt.%)	Atomic ratio (wt.%)	
С	9.73	15.5	
Ν	0.36	0.5	
0	45.14	53.99	
Na	0.43	0.36	
Mg	2.85	2.25	
Al	7.69	5.46	
Si	29.83	20.32	
K	0.21	0.10	
Ca	1.78	0.85	
Fe	1.98	0.68	

Table S1 The surface chemical constituents of Mt

Fig. S1. The molecular structural formula of BS-14.

Fig. S2. Final pH value of the solution after the adsorption process.

Fig. S3. Zeta potentials of Mt and OMts.

Table S2. The BE	ET surface areas ar	d mass contents	of nitrogen	and carbon	elements in

Sample	$S_{BET}(m^2 g^{-1})$	C(%)	N(%)
Mt	48.58	0.05	0
2 BS-14-Mt	8.27	10.43	0.80
2 BS-18-Mt	4.06	27.97	1.54

Mt and OMts.

Fig. S4. N1s narrow XPS scan for 2BS-14-Mt (a) and 2BS-18-Mt (b)

before and after Pb²⁺ adsorption

Fig. S5. Effect of kinetic study of Pb^{2+} (a) and BPA(b) adsorption onto Mt, 2BS-14-Mt and 2BS-18-Mt (10 mg L⁻¹ BPA and 100 mg L⁻¹ Pb²⁺, Temperature 30°C, Adsorbent dose 2 g L⁻¹,

pH: 5.0)

The rate equations of pseudo-first-order model and pseudo-second-order model were used for kinetic study.

The rate equation of pseudo-first-order model is expressed as follows:

$$\ln(Q_e - Q_t) = \ln q Q_e - k_1 t \tag{1}$$

where <u>Where</u> Q_e (mg g⁻¹) and Q_t (mg g⁻¹) stand for the amount of BPA and Pb²⁺ adsorbed at <u>equilibrium</u>equilibriums and at any time *t*, respectively. The constants of k_1 (min⁻¹) is the rate constant of pseudo-first order adsorption.

The rate equation of pseudo-first-order model can be expressed as:

$$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e}$$
(2)

Where Q_e (mg g⁻¹) and Q_t (mg g⁻¹) stand for the amount of BPA and Pb²⁺ adsorbed at <u>equilibrium</u>equilibriumis and at any time *t*, respectively. The constants of k_2 (g·mL·min⁻¹) is the rate constant of pseudo-second-order adsorption.

Fig. S6 Effect of initial concentration and adsorption isotherms of Pb²⁺ (a) and BPA (b) in single and the binary systems onto Mt, 2BS-14-Mt and 2BS-18-Mt, respectively (contact time: 24h; temperature: 30°C; adsorbent dose: 2.0 g L⁻¹; pH: 5.0).

The equation of Langmuir and Freundlich isotherm

Langmuir isotherm model can be calculated as:

$$\frac{C_e}{q_{eq}} = \frac{1}{K_L q_m} + \frac{C_e}{q_m}$$
(5)

Where $C_e (\text{mg} \cdot \text{L}^{-1})$ is the concentrations of BPA at equilibrium and $q_{eq} (\text{mg} \cdot \text{g}^{-1})$ is adsorbed amount of BPA and Pb²⁺ at equilibrium. $q_m (\text{mg} \cdot \text{g}^{-1})$ is the maximum adsorption capacity of the adsorbent. $K_L (L \cdot \text{mg}^{-1})$ stands for the Langmuir adsorption constant and related to saturated monolayer.

The Freundlich adsorption model is shown as:

$$\ln q_{eq} = \ln K_F + \left(\frac{1}{n}\right) \ln C_e \qquad (6)$$

Where C_e (mg·L⁻¹) is the concentrations of BPA and Pb²⁺ at equilibrium and q_{eq} (mg·g⁻¹) is adsorbed amount of BPA at equilibrium. K_F and n are the Freundlich constant related to the sorption energy and adsorption intensity, respectively.