Supplementary Material

Gas-phase kinetic and mechanism study of the reactions of O₃, OH, Cl and NO₃ with unsaturated acetates

Shuyan Wang,¹ Lin Du,¹,² Narcisse T. Tsona¹ and Wenxing Wang¹

¹Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China

²Corresponding author. Email: lindu@sdu.edu.cn, Tel: +86-532-58631980
Figure S1. (a) Pseudo-first-order plots for O₃ reactions with different initial concentrations of MPA (units in 10¹⁴ molecule cm⁻³), (b) plot of -dln[O₃]/dt versus the initial MPA concentration.
Figure S2. Relative loss of MPA versus reference compounds in the presence of (a) OH, (b) Cl and (c) NO₃.
Scheme S1. Proposed reaction pathways for the reaction of IPA with Cl.
Scheme S2. Proposed reaction pathways for the reaction of IPA with NO₃.
Scheme S3. Proposed reaction pathways for the reaction of MPA with O$_3$.

\[
\text{Scheme S3. Proposed reaction pathways for the reaction of MPA with O}_3.
\]
Scheme S4. Proposed reaction pathways for the reaction of MPA with OH.
Scheme S5. Proposed reaction pathways for the reaction of MPA with Cl.
Scheme S6. Proposed reaction pathways for the reaction of MPA with NO₃.
Figure S3. Mass spectra of the products of the reactions of MPA (a) with O$_3$, OH, NO$_3$ and Cl.
Figure S4. Mass spectra of the products of the reactions of IPA (a) with O$_3$, OH, NO$_3$ and Cl.