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The mineral–water interface exhibits great diversity in surface
functional group composition and associated reactivity towards
inorganic and organic solutes that occur in natural soil, sediment

and water.[1,2] Chemical processes of environmental signifi-
cance involving oxidation–reduction, adsorption–desorption,
and dissolution–nucleation are promoted by these interfaces
because of their propensity for acid–base, ion- or ligand-

exchange, and redox reactions.Mineral surface hydroxyl groups
of iron, aluminium and manganese (oxyhydr)oxides and silox-
ane groups of layered aluminosilicates, for example, are known

to exhibit a range in affinities for reactionwith protons, hydroxyl
ions, metals, oxyanions, and aqueous organic species and their
complexes.[3]

The environmental implications of mineral surface chemis-
try are manifold and diverse. They include atmospheric CO2

drawdown associated with silicate mineral dissolution,[4,5]

removal from solution of adsorptive metal and oxyanion con-
taminants,[6] nutrient retention for plant growth[7] and organic
matter stabilisation against microbial biodegradation.[8]

Through a combination of macroscopic experiments, molecular

spectroscopy studies, and molecular modelling, environmental
chemists are developing an improved understanding of the
molecular-scale controls over the rates and extents of mineral

surface reactions.
This Research Front presents six contributions discussing

various aspects of mineral surface reactions and their environ-

mental relevance using experimental, spectroscopic and
simulation methods. The Research Front begins with a review
by Casey[9] on the mechanisms and kinetics of ligand exchange
reactions at mineral surfaces. This paper discusses reactivity

trends for ligand and oxygen isotope exchanges in nanometre-
sized molecular clusters and larger mineral structures from the
perspective of coordination chemistry. It provides examples of

how an understanding of exchange reactions in the molecular
clusters can shed light on reaction kinetics of broad environ-
mental relevance, such as those for mineral dissolution and

metal–ligand complex formation in aqueous solutions.
The second paper, a review by Stack and Kent,[10] discusses

how computational modelling, specifically molecular dynamics

and quantum chemical simulations, can be used to build insight-
ful kinetic models of mineral surface reactions. Illustrative
examples are presented for water ligand exchange, adsorption,
crystal growth, dissolution and electron transfer. Interfacial

reactions are strongly affected by the speciation of aqueous
phase reactants as shown in the third paper, authored by
Carbonaro and Stone.[11] This study, which evaluates mineral-

surface-mediated rates of CrIII oxidation to CrVI during surface
reaction with hydrous MnIV oxide, shows that CrIII-chelating
ligands alter the pH-dependent kinetics of oxidation. This is

important, because most soil systems contain natural organic

matter (NOM) that can form stable complexes with polyvalent
metals.

The fourth paper by Pasakarnis et al.[12] builds on prior work

of the Scherer group[13] demonstrating electron transfer between
adsorbed FeII and underlying FeIII oxide surfaces. In the former
paper, the authors obtained a combination of isotopic and
spectroscopic data that show that introduction of NOM compo-

nents can alter the Fe atom exchange rate – an observation that
the authors argue has potential relevance to long-term, mineral-
associated stabilisation of organic matter in soils. The issue of

NOM stabilisation at mineral surfaces is explored further in the
paper by Chen and Sparks.[14] Employing STXM-NEXAFS
spectroscopy to assess organo-mineral associations in soils from

reducing environments depleted of Fe oxides, they found that
NOM composition was highly variable at the submicrometre
scale and exhibited no discernible pattern with inorganic ele-

ment distributions. The sixth and final paper of the Research
Front focuses on the role of mineral surface chemistry in
adsorption of novel energetic compounds, a diverse class of
emerging organic contaminants. The findings of Linker et al.,[15]

highlight the importance of compatibility between the functional
group chemistries of adsorbate and adsorbent in controlling the
extent and hysteresis of the adsorption reaction.

Although this Research Front only ‘scratches the surface’ of
work pertaining to the mineral–organic interface, I hope that it
represents the multitude of interactions that are being probed

using complementary experimental and modelling approaches.
I thank all of the authors for their valuable contributions to this
important area of research.

Jon Chorover
Editor, Environmental Chemistry
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