
 

22
nd
 International Geophysical Conference and Exhibition, 26-29 February 2012 - Brisbane, Australia   1 

 

3D magnetic inversion in highly magnetic environments using an 
octree mesh discretization 
 
Kristofer Davis     Douglas W. Oldenburg 
UBC-Geophysical Inversion Facility   UBC-Geophysical Inversion Facility   
Dept. of Ocean and Earth Sciences  Dept. of Ocean and Earth Sciences 
University of British Columbia   University of British Columbia 
6449 Stores Rd     6449 Stores Rd  
Vancouver, BC V6T 1Z4, Canada  Vancouver, BC V6T 1Z4, Canada 
kdavis@eos.ubc.ca    doug@eos.ubc.ca 
 

 

 

INTRODUCTION 

 
Magnetic data are often collected over causative bodies in 

mineral exploration applications. A common assumption for 

inversion techniques is that the susceptibility of the body is 

well below 0.1 SI. Highly-susceptible elongated source bodies 

can be affected by self-demagnetization.  This occurs when the 

neighbouring magnetic domains within the body affect the 

direction and strength of the local inducing field. (Clark and 

Emerson, 1999). Self-demagnetization is often present in 

kimberlite pipes, nickel deposits, unexploded ordnance, and 

Banded Iron Formations (e.g. Wallace, 2006). In these 

circumstances the assumption of small susceptibilities is no 

longer valid ignoring them in the inversion can lead to poor 

inversion results 

Considerable  literature has been devoted to  remenant 

magnetization and the estimation of its direction (e.g. Paine et 

al. 2001; Phillips, 2003; Li et al. 2004; Dannemiller and Li, 

2006) but much less attention has been paid to self-

demagnetization. One  approach,  developed by Shearer 

(2006), has its roots in the  the remenant magnetization 

problem. The technique solves for the amplitude of the 

magnetic field; a quantity weakly dependent upon 

magnetization direction. The result is a recovered model of 3D 

varying distribution of susceptibility. Krahenbuhl and Li 

(2007) showed the method’s utility to the self-

demagnetization problem. A more rigorous approach is to use 

integral equation techniques. Another approach, and the one 

adopted in this paper, is the technique of Lelièvre and 

Oldenburg (2009). They solve for the full Maxwell’s 

equations for source-free magnetostatics using a finite volume 

discretization. The innovation here is to modify the 

methodology to incorporate an octree discretization. This 

reduces the size of the problem and introduces considerable 

flexibility to model small scale tortuous bodies in a large 

volume (e.g. Haber, 2001, Davis and Li, 2010). 

  

In this paper we briefly discuss the governing equations and 

finite volume discretization method as it applies to the octree 

discretization. Results of the forward modelling are presented 

as well as our inversion methodology. Finally we discuss 

practical aspects for improving speed and robustness during 

the process of minimization. 

 

 

FORWARD MODELLING 

 
Maxwell’s equations for a static field with no source are: 

 

          0=⋅∇ B    (1) 

        0=×∇ H    (2) 

 

where H is the magnetic field strength and B is the magnetic 

flux density and is related to the magnetic field through the 

constitutive relation  

 

         HB µ= ,     (3) 

 

where µ is a scalar magnetic permeability. This relationship is 

valid for any magnetically isotropic and linear medium. The 

magnetic field strength can be expressed as the gradient of the 

potential, φ: 

 

                        ϕ∇=H .   (4) 

 

The magnetic permeability, µ, is related to the magnetic 

susceptibility, χ, by 

  )1(o χµµ += ,  (5) 
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Standard techniques for inverting magnetic field data are 

marginalized when the susceptibility is high and when the 

magnetized bodies have considerable structure. A 

common example is a Banded Iron Formation where the 

causative body is highly elongated, folded, and has 

susceptibility greater than unity. In such cases the effects 

of self-demagnetization must be included in the 

inversion, which can be accomplished by working with 

the full Maxwell’s equations for magnetostatic fields. 

This problem has previously been addressed in the 

literature but there are still challenges with respect to 

obtaining a numerically robust and efficient inversion 

algorithm. In our paper we use a finite volume 

discretization of the equations and an adaptive octree 

mesh. The octree mesh greatly reduces the number of 

active cells compared to a regular mesh, which leads to a 

decrease of the storage requirement as well as a 

substantial speed up of the inversion. Synthetic and field 

examples are presented to illustrate the effectiveness of 

our method. 
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where µo is the magnetic permeability of free space. When the 

susceptibility is much smaller than unity, the permeability is 

almost equal to that of free space and the local magnetization 

will be in the same direction as the inducing field. This 

assumption forms the basis of most inversion algorithms used 

in mineral exploration (e.g. Li and Oldenburg, 1996).  

 

The combination of Equations 1, 3 and 4  

 

              0=∇⋅∇ ϕµ .   (6) 

 
Solutions for equation 6 have been studied extensively for the 

methods of finite element and finite volume. We use a finite 

volume discretization on an octree mesh (Haber et al. 2007). 

Our equations are 

 

φµ∇=B ,   (7) 

                0=⋅∇ B ,   (8) 

 

Each cell in our volume of interest has a constant 

permeability, µ. The potentials, ϕ, are placed at the cell 

centres and the unknown flux values, B, are assigned to the 

centres of the cell faces. Figure 1 illustrates the positioning of 

the unknown variables for a single discretized cell. A right-

hand rule with z-vertical downward is adopted.  

 

 
Figure 1.  The placement of unknown variables for a single 

cell. The right-hand rule with z-vertical down is used. 

  

In a finite volume method, the equations are integrated over 

cells and the matrix-vector system corresponding to Equations 

8 and 9 and discretization is carried out creating the system of 

equations 

 

   qDB = ,       (9) 

  φXGB = ,               (10) 

 

where G is the gradient operator, D is the divergence operator, 

X is a diagonal matrix of harmonically averaged permeability 

values and q contains non-zero elements due to boundary 

conditions. The harmonic averaging is required to satisfy the 

continuity of B across cell faces. Equations 9 and 10 are 

combined to create the final equation 

 

      qDXG =φ .              (11) 

 

Working with the total flux can be difficult because the 

anomalous fluxes in which we are interested are much smaller 

than that due to the primary field. To avoid machine precision 

problems, a secondary flux formulation is employed. The 

anomalous flux, Bs, and anomalous potential ϕs, are defined 

as 

 

                                    oBBB −=
s

,              (12) 

                                     oφφφ −=
s

.               (13) 

 

The above equations can be combined with Equations 9 and 

10 to form the discrete system for the secondary flux 

formulation: 

 

                   
ss
φµ XGBIXB +−= −

o

1

o )( ,              (14) 

                          os DBqqDB −==
s

,              (15)  

 

where I is the identity matrix and qs are the non-zero elements 

from the secondary fluxes. The non-zero vector allows for the 

boundary to be large when the secondary fluxes are 

significant. The general problem of forward modelling takes 

the form  

 

                                 )()( mbmA =
s
φ .                       (16) 

 

The secondary scalar potentials are solved via a bi-conjugate 

gradient stabilized (e.g. Saad 1996) algorithm with an 

incomplete LU-decomposition to aid in convergence. The 

anomalous flux values are calculated from the recovered 

potentials and ultimately interpolated to the data locations.  

 

One important aspect of the finite volume discretization is the 

level of accuracy that is dependent upon the cell size and 

average permeability values. To increase accuracy in regions 

of high permeability contrast and tortuous structure, we need 

to work with small cells; however that can lead to excessively 

large problems. To handle such problems we use a semi-

unstructured mesh. An octree-based discretization is utilized 

to create small cells where accuracy is more important and 

coarser cells elsewhere.  This decreases the amount of storage 

required for the modelling and inversion.  

 

OCTREE DISCRETIZATION 

 
Octree discretization is an approach that creates a semi-

structured grid in order to preserve accuracy yet decrease the 

amount of computation storage required. For linear problems, 

octrees are determined prior to calculating the kernel 

functionals because the forward modelling requires only 

matrix-vector operations. Adaptive discretization can 

significantly reduce the storage requirement for non-linear 

methods through multi-grid methods (e.g. Haber et al. 2007).  

Octrees are based on hierarchical structure and require the 

finest possible mesh to be dimensions of 2i x 2j x 2k. The mesh 

begins coarse, splitting cells into quadrants as required based 

on a given threshold value. The mesh is regularized so that 

every cell either has one or two neighbours for every direction. 

We choose a hybrid approach by applying an octree 
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discretization based on prior information, such as topography 

and geology, and then perform minor updates to the mesh 

based on flux values as necessary. If no geologic information 

is available the mesh is discretized coarsely except in areas of 

high topographic relief. A proxy of the subsurface based on 

transformations of the observed magnetic anomaly have also 

been shown to be useful in adaptive staggered-grid mesh 

discretization (e.g. Davis and Li, 2011).  

 

The flux values are then located on the centre of each cell 

face. For large cells, ghost points for two faces are used in 

order to properly assign the flux to the surrounding cells. This 

also ensures that the discretization remains accurate to the 

second order. Figure 2 is an illustration in two dimensions for 

simplicity. The geometry between the four small cells on the 

right of Figure 2 remains the consistent with Figure 1.  

 

 
Figure 2. A 2D example showing the representation 

of flux over multiple faces for large for a single cell. 

The discretization is regularized such that cells can 

only have one or two neighbours. 

 

 
We use a tabular body for an example of octree discretization. 

The body is shown in Figure 3a. A cross-section of a full 

octree mesh based on the prior knowledge is presented in 

Figure 3b. The minimum cell dimensions are 10 x 10 x 10 m. 

The full mesh contains 1,048,576 number of cells, and 

working on this mesh requires solving for 1,048,576 potentials 

and 3,112,960 fluxes. In the octree-based mesh only 17,350 

potentials and 56,144 flux values need to be found to 

complete the solution for the forward problem. The current 

example is a work in progress, but the accuracy of the forward 

problem will remain the same yet require approximately 50 

times less disk storage. For illustration anomalous data maps 

based on the tabular body for the full and octree mesh, 

respectively are presented in Figures 4a and 4b. Although this 

is an extreme case where we assume the geology is known, an 

adaptive mesh can allow the inversion and modelling of large-

scale datasets in high-susceptibility environments where the 

size of the full solution can render the problem intractable.  

 

INVERSION 
 

The inversion of an adaptive octree-based model mesh is 

straightforward once the neighbouring cells are established. 

The discretized earth contains m prisms with a constant 

susceptibility, χ. The problem is formulated as an optimization 

in which we minimize a global objective function consisting 

of a data misfit function and model objective function. The 

data misfit function quantifies how well the forward problem 

reproduces the observed data. The model objective function 

quantifies the model smoothness through the derivatives of the 

model and can incorporate a reference model if desired. The 

model objective function is calculated on the octree mesh. As 

one would expect, this step is not as straightforward as it 

would be with a regular mesh. However, the required 

knowledge of the neighbouring cells for the anomalous 

magnetic fluxes creates a convenient parallel in order to 

calculate the model weighting matrix. A Gauss-Newton 

approach is used to minimize the total objective function.  

 

 

(a) 

 
(b) 

Figure 3. A dipping tabular body (a) used as an illustration 

for octree discretization. With prior knowledge, the mesh is 

gridded via octree discretization (b) so that the smallest cell 

dimensions are in the location of the anomalous body via 

octrees. The smaller cell sizes are in darker colours.  

 

 

PRACTICAL APPLICATION 

 
Positivity is required for the recovery of a geologically 

appropriate susceptibility model. The method of Lelièvre and 

Oldenburg (2009) redefines the model as the square-root of 

susceptibility. The advantage to this is that high 

susceptibilities and discontinuities are not penalized through 

the model objective function. Unfortunately, this is done at the 

cost of extra terms in the approximate Hessian during the 

Gauss-Newton minimization. Less accurate approximate 

Hessian can affect the convergence of the minimization. 

Furthermore, the initial model given in terms of square roots 

requires large values to avoid the problem of a dramatic 

increase in number of iterations to minimize the global 

objective function. We choose to use a projected-gradient 

approach for the solution of δm during the Gauss-Newton 
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iterations. The use of the projected gradients enforces 

positivity with the added benefit of speed versus conjugate 

gradients. 

 

Lastly, a distance weighting is applied to offset the natural 

decay of the kernel function (Li and Oldenburg, 1996). The 

weighting is based on the distance of each cell centre to each 

observation location. The locations of the cell centres are 

required for the forward modelling of the potentials and are 

also used in the calculation of the weighting function.  

 

 

(a) 

 

(b) 

Figure 4. Data maps created by the full (a) and the octree 

(b) mesh discretization for a tabular body of SI=1.0. 

 

CONCLUSIONS 
 

We have incorporated an octree-based mesh for the inversion 

of magnetic data in high susceptibility environments. Standard 

methods for inverting data in these cases may be problematic. 

Therefore, our approach works with the full Maxwell’s 

equations for magnetostatic fields. The discretization greatly 

reduces the number of model parameters required and can 

increase accuracy of the forward problem which is dependent 

upon cell size. Use of projected gradient allows us to directly 

solve for susceptibility and enforce positivity. Synthetic and 

field forward modelling and inversion examples are presented 

to illustrate the effectiveness of the method. 
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