Groundwater is a relatively low value and extensive geophysical target so viable survey solutions must cover a lot of ground, and depth range, at low cost. This is a challenge met by towed TEM systems.

What exactly is towed TEM?

Towed TEM is conducted by towing generally horizontal loops of wire behind a vehicle, one transmitting and one or several receiving. The loop sizes must be large enough to transmit/receive moments well in excess of EM noise levels while loop inductances must be kept low in order to keep turn-off time and system response low enough to resolve shallow detail. Long systems with the towing vehicle well in front of two separate non-metallic loop support structures are practical. As such a system must fit through farm gates, between trees, and along road margins without undue traffic disruption, it must be capable of folding to legal road vehicle width.

Processing involves most of the normal complications of airborne EM survey but with the additional complication that the system cannot be elevated high above the ground to isolate system response. Additional challenges are identification and removal/minimization of noise and metallic source anomalies: 1. created by movement of coils through the magnetic field of the earth, 2. created by buried telephony cables, and 3. from other sources such as power lines, buried metal pipes and fences. Much of Australia is reasonably navigable and not densely covered with infrastructure and it is in these parts of Australia where towed TEM systems, which can be deployed and manoeuvred flexibly, have a market for groundwater and other exploration.

Key words: Groundwater, TEM, electromagnetic, towed.
Comparison with alternative techniques for imaging groundwater

Electrical conductivity survey traditionally has been conducted using:
1. electrodes or wire loops manually arranged on the ground (conventional geo-electric and TEM techniques),
2. airborne electromagnetic systems, or
3. using small vehicle mounted frequency domain electromagnetic (FDEM) systems.

There have emerged niche markets for conduct of surveys using towed equipment capable of surveying deeper and/or with greater vertical detail than the small FDEM systems and/or with less setup costs than the airborne EM systems.

Due to loss of detail with respect to depth of EM methods, very deep groundwater investigations must still be relegated to techniques common with oil exploration and not discussed further in this paper.

EC is the most commonly imaged aquifer property but some techniques imaging other groundwater related properties include Electrokineetic Sounding (EKS) (Baird, 2001) and nuclear resonance imaging (NMR) (Hertrich et. al., 2002). This paper focuses on EC imaging techniques due to the lower productivity of NMR and the current experimental status of EKS.

EC imaging for groundwater investigation has been conducted from the air using electromagnetics (EM) (Brodie, et. al., 2004, Ley-Cooper et. al., 2007, Noteboom et. al., 2007), from the ground using EM (Sørensen, et. al., 2000) or capacitive geo-electric equipment (Ball, 2006) or from water using geo-electric or EM equipment (Allen, 2007, Ball, 2006, Barrett et. al., 2006, Telfer et. al., 2005).

On land, geo-electric equipment is difficult to tow unless used with capacitive electrodes (Ball, et. al., 2006) which bring their own limitations but electromagnetic devices can be readily towed. Frequency domain EM devices may be relatively small but need either large coil separation or precisely calibrated and stabilized electronics to image to greater depths. Transient electromagnetic devices resolve multiple depths using multiple time gates and numerous gates may be sampled without adding to instrument complexity or cost.

Historic towed TEM

Early adoption of towed TEM was conducted by the Aarhus hydrogeophysics group (HGG) in a precursor to the SkyTEM system, the PATEM system, which was used for groundwater investigation in Denmark (Sorensen, et. al., 2000). The system was abandoned in preference to their airborne TEM system, SkyTEM largely due to the dense network of fences that needed to be negotiated in typical Danish terrain. As Australian agriculture is less extensive, the fence problem is not prohibitive to us. Subsequent to and independently from the Aarhus HGG, Zonge Engineering also utilized towed TEM with their NanoTEM system on some occasions. (Telfer, et. al., 2005, Barrett et. al., 2006, plus earlier occasions in the USA). Allen conducted early trials with towed mats (Allen, 2007) as did Western Australian experimenters (Harris et. al., 2006).

AIRBORNE EM vs. TOWED DEVICES

Due to its greater survey speed, should airborne EM simply now replace towed TEM for groundwater investigation applications? I believe that both of these applications of EM have their niche which is defined by the criteria given below.

Airborne EM has merit as it can cover large areas in detail at relatively low cost. The cost, per linear kilometre, is not, however, necessarily lower than towed techniques, especially when interpretation issues are included in the cost. This is particularly the case for smaller projects and pilot studies that cannot justify the mobilization costs of airborne EM equipment. Towed techniques have three other significant advantages over airborne EM:

1. No measurement of, and compensation for, an air-layer is required leading to reduced interpretation complexity, one less source of error, and, in some cases at least, increased vertical resolution. Additionally, no depletion of transmission efficiency due to the air layer occurs when the system is towed rather than airborne.
2. Comparatively low hourly acquisition rates permit greater stacking rates per unit distance covered. For this reason, the moment of the system need not be anywhere near as large as the moment of an airborne system targeting the same depth.
3. Towed equipment has a much smaller near surface footprint. It is in the near surface that sources of cultural interference exist which can corrupt data. The operator of towed equipment can therefore get much closer to fences and other metallic objects without compromising data integrity. The more focused towed TEM at-surface footprint enables detailed survey in amongst sources of cultural interference where an airborne system may have the interference blended, inseparably through otherwise useful data. The towed system, can additionally, clearly sample and identify cultural interference by driving right to the sources so that much greater confidence can be placed in the process of separating out the unaffected parts of the dataset.
4. Towed TEM is conducted with close observation of the environment. It is recommended that, should geologically trained personnel operate the system, geological mapping, identification of other sources of anomalies and correlation of surface features with the data be conducted simultaneously with acquisition. Geological mapping, often now under-rated, often leads to clear explanation of otherwise ambiguous TEM data. In contrast, airborne TEM must be separately investigated by later on-the-ground investigation which, in some cases where there is complex surface outcrop, can take almost as much time as a towed TEM survey.
5. Interaction with those present on the site can have both positive and negative effects – usually, however, farmers are glad to discuss results being acquired when encountered and this can have a positive effect on public relations. Frequently, historic clues they provide, such as old driling results, true locations of bores, and response of the site hydrology to various climatic events prove to be valuable to TEM data interpretation. Where there is conflict, farmers can have control over where exactly survey may proceed whereas they may not with airborne surveys – this too may avert public relations crises.
6. No noisy low-flying aircraft that may scare animals which may then stampede are required, however, this is not generally a concern of consequence.

Airborne equipment has the following advantages:
1. It can readily negotiate terrain and vegetation that cannot be traversed by towed equipment. Groundwater exploration is often conducted across cleared farmland where the obstacles are typically land access issues, some crops and fences.
2. Acquisition is faster, and therefore large areas can be covered quickly and generally economically.
3. To date, large powerful airborne systems have been developed while power and dimensions of existing towed systems are smaller due to lack of investment.
4. Airborne techniques are affected differently to towed systems by phenomenon such as the super-paramagnetic effect (Lee, 1984) and induced polarization effects.
5. Negative impact on farmers resulting from driving across their land is avoided. Towed TEM can create negative impact with farmers due to potential for mistakes in identification of property boundaries, leaving of gates open accidentally, disruption of stock and farm personnel, pushing down of crops and having strangers on the land and around valuables. Pre-negotiation with farmers is necessary for both towed and airborne EM surveys.

It would seem that a towed system could be scaled down to survey with much more detail than an airborne system but there is a limit to this truth as scaling down of TEM systems is a difficult challenge.

DEVELOPMENT OF EQUIPMENT FOR TOWED TERRESTRIAL SURVEY

Towed transient electromagnetic arrays have been applied by Sørensen, et al.(2000), and the author (Allen, 2007) however the full potential of the technique is far from being realised. Other options for fast towed TEM data acquisition have been described by Harris et. al. (2006) and Hatch et. al. (2007).

The challenges of high primary field strength and inductance problems of multi-turn loops result in long, usually slingram, systems. The transmitters need to be able to cleanly transmit chargeable near-surface minerals; they must facilitate towing of sufficiently large area transmitter loops and one or more receiver loops upon largely non-metallic structure;

2. They must be robust enough to withstand field use including impacts with tree stumps hidden in long grass;
3. They must be capable of passing through farm gates and between other common obstructions without undue delay;
4. They should be designed in such a way that they can isolate and minimise effects of incomplete transmitter turn off, loop self and mutual inductance, super-paramagnetic near-surface minerals and chargeable near-surface minerals;
5. The transmitters need to be able to cleanly transmit high currents. Dual moment operation is beneficial; and
6. They must be readily road transportable and GPS equipped.

Figure 2 presents a platform with the transmitter and receiver loops placed on dragged sheets. The sheet is 2mm thick polyethylene which is heavy enough to prevent lifting by all but strong wind and rigid enough not to catch on stumps, barbed wire, and other obstacles. Practical size of the sheet is limited by the combination of the necessity of weight per unit area needed to prevent lifting by wind, and total weight which needs to be low enough to permit man-handling. The sheet is very useful for permitting precise layout of primary field nulling coils when using central loop receiver loops, and for spacing multi-turn transmitter loops so as to reduce self-capacitance and, to a lesser extent, self-inductance. It is difficult to increase the number of transmitter loop turns without compromising turn-off ramp integrity. This is a problem well understood by designers of airborne TEM systems.

CONCLUSIONS

Electrical conductivity imaging, using towed devices, for groundwater investigation can be highly effective. Geological system complexity, typical of sedimentary environments can often be resolved. This is important for the precise management of groundwater, permits creation of meaningful groundwater models, and can open up the possibility of efficiently managing recharge. Multi-depth groundwater connection with surface water bodies can be studied using geo-electric equipment while multi-depth survey across dry ground may be effectively completed using transient electromagnetic equipment. Once developed to full potential, towed imaging solutions are appropriate techniques for many groundwater investigations.

REFERENCES

Harris, B.D., Wilkes, P.G., and Kepic, A., 2006, Acquisition of very early time transient electromagnetic data for shallow geotechnical, environmental and hydrogeological applications: SAGEEP Proceedings, EEGS.

Harris, B.D., Wilkes, P.G., and Kepic, A., 2006, Acquisition of very early time transient electromagnetic data for shallow geotechnical, environmental and hydrogeological applications: SAGEEP Proceedings, EEGS.

 Dept. of Earth Sci., Geoph. Lab. Univ. of Aarhus, Denmark.

Figure 3 Towed TEM data inverted using EM1DInv, smoothness constraint and a 10 layer model. Resistive river alluvium of variable depth is observed overlying conductive shale. Displayed bore logs have facilitated this interpretation. This dataset was collected in half a day using AgTEM2 (see figure 1). (Taylor Ag are thanked for permission to present this dataset).