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INTRODUCTION 
 
The majority of existing methods used for the inversion of 
airborne electromagnetic (AEM) data use what are generally 
called gradient-based optimization techniques.  They typically 
minimize an objective function comprised of data misfit (e.g. 
least squares) and model regularization (e.g. roughness) terms.  
Since the problem is non-linear, an iterative search involving 
the matrix solution of equations, linearized about the current 
model, is performed.  The final solution is a single model, that 
fits the data within the noise levels but also conforms as 
closely as possible to the constraints imposed by the model 
regularization. 

 
Due to non-uniqueness and data errors, the single model is just 
one of an infinite suite of models that could possibly fit the 
data within the noise levels.  On its own, the single solution 
provides no information about the non-uniqueness or 
uncertainty in the solution.  The lack of uncertainty 
information is widely recognized as a drawback of the single-
solution gradient-based inversions.  Some methods make use 
of the posterior model covariance matrix (Menke, 1989) to 
estimate model parameter uncertainties.  However, strictly 
speaking, such estimates are accurate only for linear problems 
and they cannot take account of the non-linearity or non-
uniqueness of the AEM inversion problem.  They also often 
reflect the particular choice of regularization parameters. 
 
We present an example of a new approach to the 1D inversion 
of time-domain AEM data that provides not only a best fit 
model, but also a wealth of information about the uncertainty 
and non-uniqueness.  We use a reversible jump Markov Chain 
Monte Carlo (RJ-McMC) method to perform Bayesian 
inference.  Simulated annealing, another Monte Carlo method, 
was used by Yin and Hodges (2007) for AEM inversion.  
Rather than addressing uncertainty, their motivation was to 
avoid the solution being trapped in a local minima and being 
sensitive to the starting model.  Our approach is however very 
similar in both motivation and method to just recently 
published work by Minsley (2011).  Minsley demonstrates the 
extent of uncertainty information that can be attained from 
frequency-domain AEM data, and his method would apply 
equally well to time-domain data. 
 

METHOD 
 
This work has evolved from applications developed for 
seismic tomography by Bodin and Sambridge (2009) and 
Bodin et al. (2009), to which the reader should refer for a 
complete mathematical description.  Here we only give an 
outline and a synthetic example to show how it has been 
adapted for AEM. 
 
The Earth is parameterized by a variable number of non-
overlapping cells defined by a 1D Voronoi tessellation.  A cell 
is equivalent to a layer in conventional AEM inversion and 
has a corresponding conductivity value.  The layer interfaces 
are positioned midway between the Voronoi cell nuclei, 
thereby defining the layer thicknesses and depths.  We may 
choose to work in linear or logarithmic depth and/or 
conductivity units.  The number of cells n, the cell 
conductivities ck, and the depth position of their nuclei zk, are 
all unknowns in the inversion.  The parameters are confined to 
finite ranges (i.e. nmin ≤ n ≤ nmax ,  cmin ≤ ck ≤ cmax , and 
zmin ≤ zk ≤ zmax). 
 

SUMMARY 
 
A new approach for the 1D inversion of AEM data has 
been developed.  We use a reversible jump Markov Chain 
Monte Carlo method to perform Bayesian inference.  The 
Earth is partitioned by a variable number of non-
overlapping cells defined by a 1D Voronoi tessellation.  
A cell is equivalent to a layer in conventional AEM 
inversion and has a corresponding conductivity value.  
The number and the position of the cells defining the 
geometry of the structure with depth, as well as their 
conductivities, are unknowns in the inversion. 
 
The inversion is carried out with a fully non-linear 
parameter search method based on a transdimensional 
Markov chain.  Many conductivity models, with variable 
numbers of layers, are generated via the Markov chain 
and information is extracted from the ensemble as a 
whole.  The variability of the individual models in the 
ensemble represents the posterior distribution.  Spatially 
averaging results is a form of ‘data-driven’ smoothing, 
without the need to impose a specific number of layers, 
an explicit smoothing function, or choose regularization 
parameters.  The ensemble can also be examined to 
ascertain the most probable depths of the layer interfaces 
in the vertical structure. 
 
The method is demonstrated with synthetic time-domain 
AEM data.  The results show that an attractive feature of 
this method over conventional approaches is that rigorous 
information about the non-uniqueness and uncertainty of 
the solution is obtained.  We also conclude that the 
method will also have utility for AEM system selection 
and investigation of calibration problems. 
 
Key words: transdimensional, AEM, Bayesian, 
inversion, Monte Carlo. 
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The RJ-McMC sampling is carried out on multiple 
independent Markov chains in parallel.  The sampling for each 
chain begins by initialising with a random model.  Its number 
of layers is randomly chosen, from the allowable number 
range, and with uniform probability.  Then, in-turn, the cell 
conductivities and nuclei depths are similarly set.  Once 
initialised, the main sampling loop begins generating models. 
 

In each loop a new model (m′′′′) is proposed by altering the 

current model (m) using one of the following propositions; 

(i) value-change, (ii) nucleus-move, (iii) birth, or (iv) death.  
The value change proposition occurs on every second loop, 
and on alternate loops, with equal probability, one of the other 
three propositions is used.  For the value change proposition a 
cell is randomly chosen and its conductivity (c) is perturbed to 

a new value (c′′′′) according to a Gaussian proposal distribution 

with standard deviation σc (i.e. c′′′′ = c+η×σc, where η is a 
Normal random deviate).  For the move proposition a nucleus 
from m is randomly chosen and its original depth (z) is 
perturbed according to a Gaussian proposal distribution with 

standard deviation σm (i.e. z′′′′ = z + η×σm). 
 
In the birth proposition a new nucleus is inserted at a random 
position in the allowable depth range.  Its conductivity is 
assigned by a perturbation to the conductivity of the original 
cell (c) in the current model m, at the proposed new nucleus 
depth, according to a Gaussian proposal distribution with 

standard deviation σbd (i.e. c′′′′ = c + η×σbd).  The death 
proposition is the exact opposite of the birth step. 
 

Once m′′′′ is generated it is tested against the bounds to make 
sure it is a permissible model.  If not it is immediately 

rejected.  If m′′′′ is permissible, a layered earth is constructed 
(and converted to linear-space if necessary), and the forward 

model response g(m′′′′) is calculated.  The data misfit 

Φ(m′′′′) = ∑([dk - gk(m′′′′)]/ek)
2], is computed, where d and e are 

the observed data and errors respectively.  Then the likelihood 

of the data given the model p(d|m′′′′) = exp{-0.5×Φ(m′′′′)} is 
calculated. 
 
A proposed model may be accepted or rejected according to 

an acceptance probability α(m′′′′|m).  The acceptance 
probability is the key to ensuring that the samples will be 
generated according to the desired posterior probability 
density p(m|d).  Using Bayes’ Theorem, it can be shown that 

the posterior p(m|d) ∝ p(m)×p(d|m), where p(m) is the prior 
probability of the model m.  It turns out that the chain will 
converge if, 

( ) ( | ) ( | )
( | ) min 1, | |

( ) ( | ) ( | )
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where q(m′′′′|m) is the proposal probability of the forward-jump 

from m to m′′′′ and the Jacobian term |J| is unity for the case at 
hand (Bodin and Sambridge, 2009).  The process of accepting 
or rejecting moves controls the sampling of the Markov chain 
so that it preferentially samples regions of parameter space 
with high values of the target probability density, p(m|d), or 
more precisely the density of the chain will asymptotically 
converge to that of the target density. 
 

The expressions for α(m′′′′|m) differ depending on the type of 
proposal and are too cumbersome to reproduce here.  
However, summarizing from Bodin and Sambridge (2009), we 
can say that the prior and proposal ratios reduce to unity for 
the value-change and nucleus-move proposals.  Therefore for 
these particular proposals, better fitting models are always 

accepted, and worse fitting models are accepted according to 

the ratio of the likelihoods p(d|m′′′′)/p(d|m). 

 

For the birth and death propositions the acceptance probability 
is a balance between the proposal probability, which 
encourages conductivity changes, and the difference in data 
misfit, which penalizes conductivity changes if they degrade 
data fit.  Also, given similar data fits, a proposed model has 

more chance of being accepted if m′′′′ has fewer layers than m, 
giving the algorithm a form of natural parsimony. 
 
Each chain generates Ns models, including the burn-in period 
Nb that gives time for an acceptable misfit to be achieved.  
After the burn-in, new models are added into a discretized 2D 
posterior histogram.  That is, for each discrete histogram 
depth-bin, the model conductivity is determined and the 
corresponding histogram conductivity-bin count is 
incremented.  This builds up an image representation of the 
desired probability density function p(m|d).  Similarly, a 1D 
changepoint histogram is built up by incrementing all depth-
bins of the 1D histogram in which a layer interface falls. 
 

EXAMPLE 
 
We have inverted synthetically generated AEM data from a 
three-layered earth model.  The secondary-field data were 
synthesized for the 15 X- and Z-component windows of the 
TEMPEST system (Lane et al., 2000).  Noise was not added 
to the synthetic data, but since it is required in the inversion to 
calculate the data misfit (Φd), it was estimated via the noise 
model of Green and Lane (2003).  We used a 3.0% 
multiplicative noise and typical additive noise estimated from 
the standard deviation of high-altitude data. 
 
Eight independent Markov chains were used in the inversions.  
The chains were sampled in parallel on eight CPUs of a cluster 
computer using the Message Passing Interface standard 
(Message-Passing-Interface-Forum, 1994).  In each chain 
Ns=106 samples were acquired.  Models were accumulated 
into the posterior probability and change-point histograms 
after the burn-in period of Nb=104 samples. 
 
A minimum of 1 and maximum of 10 partitions were allowed 
in the partition model.  The model was parameterized in 
linear-depth and base ten logarithmic-conductivity space.  The 
model bounds were 0–200 m in depth and 10-4–5.0 S/m in 
conductivity.  For the storage of the posterior histograms the 
model space was discretized into 200 depth-cells and 100 
conductivity-cells.  We set the proposal distributions standard 
deviations to σc=0.3 logarithmic decades for the conductivity 
value change proposition, σbd=1.0 decade for the birth-death 
conductivity value change proposition, and σm=5.0 m for the 
nucleus move proposition. 
 
Given the diminishing sensitivity of AEM with depth, one 
might question our decision to choose a linear-depth 
parameterization.  However the choice should be based on 
prior geological expectation rather than sensitivity 
considerations.  Accordingly, since there is typically no reason 
to presume that geological interfaces are more likely to be 
closer to the surface than they are likely to be at greater depth, 
a uniform dependence is appropriate.  The choice to use a 
logarithmic-conductivity parameterization is based on the 
realization that conductivity is usually distributed 
logarithmically in nature. 
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Figure 1 shows a summary of the results for the inversion of 
the synthetic data.  The top left panel shows the convergence 
of the data misfit (Φd) for each of the 8 chains.  The horizontal 
dotted line shows the level of data misfit (Φd=Nd=30) that 
would indicate the data has been satisfactorily fitted.  The 
vertical dotted line indicates the extent of the burn-in period, 
after which models are accumulated into the posterior 
histograms.  Convergence was generally achieved by the end 
of the burn-in. 
 
The top right panel shows a histogram of the number of 
partitions in the accumulated models.  It indicates that a four 
layer model, one more than the actual number of layers in the 
synthetic model, is most likely.  It also indicates that a one or 
two layer model is much less likely to be able to explain the 
data than three or more layers. 
 
The bottom left panel shows the true synthetic three layered 
model (blue line) and information that summarizes the 
ensemble of models collected after the burn-in period.  The 
greyscale shading represents the discretized 2D posterior 
histograms.  The darker the shading, the more models (counts) 
in the accumulated ensemble that had that particular 
conductivity at that particular depth. 
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Figure 1.  Results summary of the inversion of a synthetic 

TEMPEST response for a three layered earth model 

shown by the blue line in the bottom left panel. 

 
To assist in the understanding of the shading, Figure 2 shows 
rows (profiles) from the histogram at specific depths of 10, 60 
and 120 m.  The width of the profile peaks can be considered a 

measure of the certainty.  This is analogous to how the 
standard deviation of a normal distribution can be used to 
quantify certainty.  The shape and skewness of the profiles 
also contains information. 
 
The narrow peak for the 10 m depth trace (red) indicates that 
the conductivity at 10 m depth is well resolved.  The width of 
the peak for the 60 m depth trace (green) is suggesting wider 
range of conductivities is likely at that depth.  It peaks around 
the true conductivity of 0.4 S/m, but also shows that 
conductivities of up to a little over 1 S/m are quite probable.  
However the histogram shading around 60 m depth indicates 
the layer must be thinner if its conductivity is 1 S/m, which is 
simply a reflection of the well known principle of electrical 
equivalence (Mallick and Verma, 1979). 
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Figure 2.  Profiles (or rows) at three different depths from 

the 2D posterior histogram represented by the greyscale 

shading in Figure 1. 

 
The lack of a peak at 120 m depth trace (blue) in Figure 2 
indicates the conductivity is unresolved at that depth.  It rules 
out a conductive layer (>0.1 S/m) at that depth, since the 
histogram shading disappears at high conductivity, but 
discrimination between the lower conductivities is quite poor.  
This was also the case for 10 m depth.  Again, this is really 
just a reflection of the poor resolving power of AEM, and 
inductive techniques more generally, at the lower end of the 
conductivity scale. 
 
Also shown on the bottom left panel of Figure 1 are the best fit 
model (green) and the 10, 50 and 90 percentiles (red).  The 
best fit model is the model from the accumulated ensemble 
that had the lowest data misfit.  In this case, where noise was 
not added to the synthetic data, it happens to be very close to 
the true synthetic model.  It is important to understand, that 
this would not necessarily be the case for real data containing 
noise. 
 
The percentile models are calculated from the posterior 
histogram such that, at any given depth, p% of the models in 
the ensemble have conductivities less than the pth percentile 
model.  The 50th percentile model could therefore be 
described as a ‘median model’.  We would most likely use the 
50th percentile model for generating flight-line conductivity-
depth sections.  The 10th and 90th percentile models provide 
some indication of the probable lower and upper bounds of the 
conductivity range. 
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The distance between the 10th and 90th percentiles, also 
called the 80% credible interval, gives a measure of 
(un)certainty in the conductivity estimates.  It could also be 
used to quantify the depth of investigation (DOI).  We might 
define that the DOI as the depth at which the 80% credible 
interval is greater than, for example, three decades of 
conductivity, which would equate to about 80 m for the 
example above.  The choice of credible interval would be 
somewhat arbitrary, as in the case of other DOI estimation 
methods. 
 
The bottom right panel of Figure 1 shows the changepoint 
information (e.g. Gallagher, et al., 2011).  The changepoint 
information is a 1D histogram, represented with both shading 
and a trace, of the depths at which any layer interfaces occur 
in the accumulated ensemble of models.  It gives a very strong 
indication in this case of the probable depths of layer 
boundaries. 
 

DISCUSSION AND CONCLUSION 
 
The method we have demonstrated shows great promise as a 
method for 1D inversion of AEM data.  The advantage of the 
method over conventional gradient (matrix) based inversion 
methods is that rigorous information about the non-uniqueness 
and uncertainty of the solution is obtained.  Furthermore, the 
ability to extract DOI and changepoint parameters is also 
useful.  The method is not subject to starting model sensitivity 
and instability issues that are sometimes encountered in 
gradient methods.  Another appealing feature is not having to 
pre-specify the number of layers in the model or the amount of 
smoothing.  This is especially attractive for green-field 
exploration areas where prior knowledge of the geology may 
not be adequate.  We also foresee potential for this method in 
detailed studies on comparing the ability of different AEM 
systems to resolve specific targets, and thus to inform decision 
on the optimal AEM system to use for a particular survey. 
 
At the time of writing (August 2011) we have not yet fully 
deployed the method for routine inversion of AEM surveys at 
Geoscience Australia.  However we have inverted every 20th 
sample (every ~60 m along flight lines) of a complete 8 800 
line kilometre VTEM™ survey.  This required 70,000 CPU 
hours, which at a commercial cluster compute rate of 
$0.12/hour (e.g. Amazon Elastic) would come to a cost of just 
under $1.00/line kilometre, which is negligible in comparison 
to per line kilometre AEM data acquisition costs.  Our 
assessment is that this will be a practically viable inversion 
method for routine deployment in the near future. 
 
Further developments are required to finalize our 
implementation for routine deployment on typical AEM 
datasets.  For example when inverting fixed-wing AEM data 
we usually have to invert for the transmitter-receiver offsets, 
receiver pitch angle and possibly transmitter height (Brodie, 
2010).  It is intended to include the capability of inverting for 
these geometric parameters as well (e.g. Minsley, 2011).  We 
also intend to make provision for different kinds of prior 
conductivity distributions.  Further experimentation will also 
be carried out to determine optimal combinations of samples 
and number of Markov chains for the most efficient 
convergence. 
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