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INTRODUCTION 

 
The presence of chargeable material in the ground can often 

provide an excellent proxy for the distribution of sulphides in 

the subsurface.  Traditionally, chargeability is mapped using 

induced polarization (IP) surveys (Seigel, 1959) in which  

current is injected into the ground using two transmitter 

electrodes and the potential difference is measured across 

other pairs of electrodes placed away from the transmitter. 

These data are now commonly inverted to recover 2D or 3D 

chargeability structures (e.g. Oldenburg and Li (1994), Li and 

Oldenburg, (2000)). 

 

Although IP methods have had great success, surveying large 

areas can be prohibitively time consuming and expensive.  IP 

methods can also fail in some geological situations. If the 

surface material is too resistive it can be impossible to push 

enough current into the ground and to excite an observable 

polarization effect.  In areas with very resistive overburden, 

the voltage and power limitations of the transmitter hardware 

adversely affect the resulting signal.   

 

The magnetic induced polarization (MIP) method (Seigel, 

1974) was developed in order to address these issues.  In this 

method, the transmitter is still a grounded source but the 

secondary magnetic field is measured.  A 3D inversion 

technique for MIP data was developed by Chen and 

Oldenburg (2003).  MIP eliminates the time consuming task 

of placing receiver electrodes, but current still needs to be 

injected into the ground. The use of an inductive source was 

examined by Hohmann et al. (1970) and the use of natural 

sources was investigated by Gasperikova and Morrison (2001) 

but the method has not been developed for practical 

application. 

 

In this work we propose a new inductive source IP (ISIP) 

technique. The technique is based on the ability to measure the 

differences in the magnetic fields at two low frequencies. We 

propose a new way to process the data that is based on the 

character of the fields at low frequency accompanied with a 

new inversion methodology for an effective IP parameter. 

 

METHOD 

 
Maxwell’s equations, in the frequency domain, assuming a 

time dependence of tie ω− , are 

 

                                0=−×∇ HE ωµi                         (1a) 

                                  sEH =−×∇ σ                           (1b) 

 

Here, E and H are the electric and magnetic fields,σ is the 

conductivity and µ is magnetic susceptibility.  If we define H 

such that SHHH += 0 and sH =×∇ 0  we can rewrite the 

equations in terms of E and Hs as 

 

                            0HHE ωµωµ ii s =−×∇                    (2a) 

                                  0=−×∇ EH σs                         (2b) 

 

Eliminating E from the system yields an equation for Hs 

 

                         0HHH ωµωµρ ii ss =−×∇×∇             (3) 

where ρ is the resistivity, 
σ

ρ
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= .  We first assume a real, 

non-dispersive (frequency independent) resistivity distribution 

ρ .  Differentiating Equation 3 twice with respect toω gives 
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Expanding Hs about 0=ω , and dropping the higher terms 

leaves 
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SUMMARY 
 

We present a new survey methodology to map the 

distribution of chargeable material in the subsurface 

using inductive electromagnetic sources and observations 

of the magnetic fields in the frequency domain.  An 

accompanying inversion algorithm is developed, and the 

technique is tested on synthetic data. 
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Figure 1. Secondary magnetic fields generated by a 100m 

loop centred at x=600m, y=600m above a conductive (non-

chargeable) block in a half space with hz11 =ω  and 

hz22 =ω . ISIP data (1e and 1f) show very little response 

to this model. 

 

We define the quantities ℜd and ℑd  
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where 1ω and 2ω are two frequencies which are sufficiently low 

so that their inductive responses to a real conductivity earth 

are only minimally different, that is, we are working in 

resistive limit regime.  For any real, non-dispersive resistivity 

distribution, we see from Equation 6 that both ℜd  and ℑd  

should approximately equal zero. Signal in either of these 

quantities indicates the presence of chargeable material and 

we will   use these data in our inversion. 

 

Discretization 

 

For numerical evaluation, we discretize Maxwell’s equations 

on a orthogonal, staggered grid and use a finite volume 

approach (Haber and Ascher, 2001).  If we assume that 

0µµ = , then 0=⋅∇ s
Hµ . This is added as stabilization term 

to Equation 3 to yield 

 

              0HHHH ωµωµµρρ ii sss =−⋅∇∇−×∇×∇        (8) 

 

We choose to put Hs on cell edges, and ρ at cell centres.  Our 

matrix equations are 
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Figure 2. Secondary magnetic fields generated by a 100m 

loop centred at x=600m, y=600m above a conductive block 

with a chargeability of 0.1. 

 

where curl and grad are discrete forms of the curl and 

graident operators, and Av is an averaging matrix. 

 

To show the merits of our choice of data we perform a forward 

modelling.  We use the Cole-Cole model (Pelton et al., 1978) 

to describe the complex resistivity. In the frequency domain 
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where 0ρ is the resistivity at zero frequency, η  is the 

chargeability, and τ  is a time constant.  The parameter c  is a 

constant which controls the frequency dependence of the 

material.   

 

Figure 1 shows the vertical components of the secondary 

magnetic field computed using Equation 8.  A square loop 

transmitter, 100m on a side, is centered at x=600m, y=600m, 

and is placed above a conductive (2 mΩ ),  non-chageable 

block in a resistive halfspace (100 Ohm-m).  Both the real and 

the imaginary components of the response are shown at 1 hz 

( 1ω ) and 2 hz ( 2ω ).  Figures 1e and 1f show the computed 

ISIP data.  For this non-dispersive resistivity distribution, the 

values are approximatly equal to zero. 

 

Figure 2 shows results of an identical survey, but this time 

carried out above a chargeable block, with resistivities 

following a Cole-Cole model (Equation 10, 0ρ =2 mΩ , 

η =0.1, τ =0.1, c=1) In this case, there is strong dipolar signal 

observed in both the real and imaginary data as in Figures 2e 

and 2f. These are the data we will invert. 
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Formulating the  ISIP data equations 

 

The effect of chargeability is to cause a pertubation in the 

resistivity with frequency.  Let 1ρ equal the real, frequency 

independent, back ground conductivity. Let 2ρ be the 

resistivity that would be observed at 2ω . The frequencies 

1ω and 2ω are closely spaced, so the reisistivity that would be 

observed at 2ω is equal to the resistivity at 1ω , plus a small 

pertubation, or ρρρ ∆+= 12 . We can write 
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Taking the Cole-Cole model, setting 1=c , and expanding 

about 0=ω  gives 

 

                              ( ) ητωρρωρ 00 i−≈                          (12) 

 

The first order perturbation is purely imaginary, so at low 

frequency ρ∆  is purely imaginary, which we can denote 

as Iρ∆ . Substituting this into Equation 11 and separating the 

real and the imaginary parts yields 
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Combining this with the equations for the ISIP data (Equation 

7) leaves 
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To evaluate this we  need to compute the sensitivities of Hs to 

changes in the imaginary part of the resistivity. We define the 

operators RT  and IT  to be 
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R diagdiag gradAgradcurlAcurlT +=     (15a) 
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Differentiating Equation 9 with respect to Iρ , and separating 

the real and the imaginary parts gives 
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If we consider the sensitivity to changes in the imaginary part 

of the conductivity about a purely real conductivity, and we 

consider only low frequencies such that 0≈ωµ  then this 

simplifies to 

               ( ) v
s
I

T

I

s
R

R diag AHcurlcurl
H

T =
∂

∂

ρ
                   (17a) 

               ( ) v
s
R

T

I

s
I

R diag AHcurlcurl
H

T =
∂

∂

ρ
                   (17b) 

 

We can now define the quantities GI, GR and m to be 
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                                   ητ=m                                       (19) 

this gives 

                                      md IG=
ℜ                              (20a) 

                                      md RG=
ℑ                             (20b) 

 

The recovery of the “chargeability,” m, from the ISIP data 

therefore  reduces to solving a standard linear inverse 

problem.  

 
Figure 3. True resistivity model used in the synthetic test in  

log10 mΩ .  The overburden is 40m thick and has a 

resistivity of 1000 mΩ  and the background is 100 mΩ .  The 

block has a resistivity of 2 mΩ , a chargeability of 0.1, and 

time-constant of 0.1. 

 

Inverse modelling 

 

The goal of the inversion is to recover a chargability 

distribution which can predict the observations while 

minimizing a predefined objective function.  Prior to inverting 

for chargeability, we must have a real background resistivity, 

1ρ ,  from which to compute the sensitivity elements GI and 

GR. This background can be obtained by inverting the low 

frequency ( 1ω ) data from all transmitters and receivers if the 

data are sufficiently numerous. The desired sensitivities can be 

computed via Equation 18.  The inverse problem is solved by 

minimizing  the usual objective function md βφφφ +=  

where dφ is the data misfit, mφ is a measure of the amount of 

structure present in the model and β is the regularizatoin 

parameter. A Gauss-Newton procedure is used and the matrix 

system solved using Conjugate Gradient techniques. The  
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Figure 4. True chargeability distribution.   

 

sensitivity is kept in factored form (Haber et al, 2004) with the 

forward modelling operator factored as a Cholesky 

decomposition. Positivity on the chargeability is achieved by 

implementing a projected gradient method. (Kelly, 1999).  

 

Synthetic Example 
 

A synthetic resistivity model was created containing a 

conductive, chargeable block ( 0ρ =2 mΩ , η =0.1, τ =0.1, 

c=1), buried beneath a resistive overburden (1000 mΩ ).  The 

background had a resistivity of 100 mΩ .  The resistive 

overburden was 40m thick.  The block had dimensions of 80m 

on a side, with the top of the block being 60m below the 

surface.  The synthetic resistivity model is shown in Figure 3. 

 

The frequency domain response of this complex resistivity 

distribution was simulated for 9 square loop transmittors.  The 

transmitters were on the surface, were 50m on a side, and were  

distributed as a 3 by 3 grid. A grid of 64 recievers (placed 

every 40m, 1m above the surface) recorded the three 

components of the magnetic field. Data were modelled at 1hz 

and 2hz.  The real, synthethic ISIP data were then calculated 

using Equation 7a. 

 

The ISIP data were contaminated with normaly distributed, 

random noise prior to inversion.  The noise had a standard 

deviation of 5% of the data value plus a small floor.  The data 

were then inverted using the methodology presented 

previously.  The true and resulting chargeability models are 

shown in Figures 4 and 5. 

 

Conclusion 
 

In this work we have explored a new imaging technique to 

recover the distribution of chargeable material in the earth 

given a magnetic sources and magnetic receivers.  Our method 

is based on low frequency measurements so that the inductive 

responses to a real conductivity distribution are minimally 

different at the two frequencies. That is, we are working in the 

resistive limit regime.  We have developed a mathematical 

framework and applied it to synthetic data set that 

demonstrates the potential of the method. 

 

 

 

 
 

Figure 5. Chargeability distribution recovered from 

inversion of synthetic data. 
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