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INTRODUCTION 
  

Principal component analysis (PCA) is a linear transformation 

whereby multi-channel data are decomposed to a new basis 

via a rotation defined by the covariance characteristics of the 

data.  By winnowing principal components below a threshold 

or removing specific components, these data can be 

compressed, cleaned, or separated into constituent components 

much like processes based on Fourier or Wavelet transforms 

(Kramer and Mathews, 1956; Green, 1998). 

 

This process, while effective at removing unwanted signals 

from multi-channel data, alters the statistical characteristics of 

the desired data components.  As a consequence, any 

numerical interpretation must account for these changes or 

artefacts will be introduced in the recovered models, just as in 

any method of noise removal.  In the case of noise removal 

through frequency filtering, for example, the inversion must 

include the same type of filter to accurately represent the 

causative body (e.g. Lee, 2006).  In the case of TEM surveys, 

PCA might separate the power-law decay due to layered 

structure from a partial exponential signal superimposed (in 

low susceptibility environments) due to a compact conductor.  

The same kernels used to invert the entire signal for 

conductivity distribution cannot be used to invert only the 

exponential signal.  In fact, the physics of the system are no 

longer the same--how to construct and update a global 

objective function is unclear without an understanding of the 

physics that produced the anomaly.  Once the global objective 

function is built, a clear understanding of the statistical 

distribution of the data is critical for proper choice of optimum 

misfits. 

 

In this paper, we briefly describe two major uses of principal 

component analysis in the context of transient electromagnetic 

surveys: noise reduction and data analysis, and compressive 

inversion.  We then show the requirement of including the 

rotation matrix calculated by principal component analysis in 

the inversion kernels for accurate results.  In this context, we 

then investigate the statistical distributions of TEM data to 

understand the resulting consequences to Tikhonov-based 

inversion processes using both synthetic and field examples. 

 

PRINCIPAL COMPONENT ANALYSIS 

 
Principal component analysis is a method of rotating 

multichannel data onto a different orthonormal basis set.  The 

new basis is constructed via the eigenvectors of the covariance 

matrix which populate the columns of the rotation matrix, R.  

Therefore the data are rotated onto a new coordinate system 

that sorts the data by covariance.  Thus signals that are 

pervasive along the survey tend to be in the first few principal 

components while uncorrelated noise tends to exist in the last 

few principal components.  To briefly describe the rotational 

scheme, we introduce the Karhunen-Lo\'eve transform. 

 

Given a covariance matrix, Γ, we can decompose this matrix 

into its constituent eigenvectors as: 

Γ = RRRRTΛRRRR 

 

where RRRRT is a matrix whose columns are the eigenvectors of Γ 

and Λ is a diagonal matrix populated by the eigenvalues.  We 

may then rotate our data matrix, X (with each column 

representing a single observation location): 

Ψ = RXRXRXRX 

 

and rotate back via the transpose to yield the reconstructed 

data: 

XXXX = RRRRTΨ. 
 

SUMMARY 
 

Statistical de-noising and compressive inversion methods 

based on Principal Component Analysis can reduce 

random noise, separate desired signals from correlated 

noise, and improve the efficiency and results of airborne 

EM inversions.  However, inversion of PCA-processed 

data with standard kernels produces inaccurate results 

due to the improper forward mapping operators used.  

These inversions must incorporate the PCA rotation in 

the inversion process for accurate results.  In order to 

appropriately apply these operators to the inversion 

kernels, the statistical distribution of the noise before and 

after processing and its effect on the data misfit must be 

understood.  We can then develop compressive inversion 

techniques utilising PCA. 

 

In this presentation, we demonstrate the need for 

incorporation of rotation into the inversion kernels 

through linear examples and show the utility of principal 

component analysis in compressive inversion.  We then 

examine the statistical distribution of TEM data and noise 

and show that the noise follows a multivariate t-

distribution both before and after processing with PCA.  

We conclude by introducing a compressive inversion 

technique formulated in the principal component domain.   
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We can remove particular components in the rotated domain 

to isolate particular signals or remove uncorrelated noise.  

Multiplying by an identity matrix, B: 

XXXX	 = RRRRTBBBBΨ 

 

yields an equivalent result.  We can then set the diagonal 

elements to zero which correspond to principal components to 

be removed. 

 

INVERSION OF PROCESSED DATA 

 
Inversion of data processed with PCA must incorporate the 

rotation into the inversion kernels for accurate results (Kass et. 

al., 2009).  Figure 1 shows a set of TEM data after processing.  

Removal of the first principal component completely changes 

the characteristics of the decay curve—clearly this change 

must be incorporated into inversion. 

 

 
Figure 1: TEM data reconstructed with principal 

components 2-20.  Removal of the first principal 

component has completely altered the standard TEM 

decay shape.  

 
By applying the rotation matrix to the forward mapping 

operator, we can account for the changes introduced by PCA.  

We construct a block-diagonal matrix containing the rotation 

matrix calculated by PCA on the diagonal and multiply by the 

results from our forward mapping operator: 

 

�JJJJrTWWWWd
TWWWWdJJJJr + �WWWWm

TWWWWm��mmmm
= JJJJrTWWWWd

TWWWWd�dddd��� − RRRRF�mmmm��
− �WWWWm

TWWWWm�mmmm− mmmm�� � 
 

where J is the calculated sensitivity matrix for the current 

iteration, WWWW! is a data weighting matrix, � is a tradeoff or 

Tikhonov parameter, WWWW" is a model weighting matrix, �mmmm is 

the calculated model perturbation, dddd��� is the observed data, R 

is the block-diagonal rotation matrix calculated from PCA, 

F�mmmm� is the forward mapping of the model, m, at the current 

iteration, and mmmm��  is a reference model. 

 

Figure 2 shows a linear example of an inversion requiring 

incorporation of the rotation into the sensitivity matrix.  After 

processing with PCA, the inversion is unable to accurately 

construct a sensitivity which will result in a model that fits the 

data.  Only by incorporating the rotation matrix can a suitable 

model be recovered. 

 

Choice of regularization parameter via the L-curve criterion is 

unaffected by PCA processing.  However, choice via 

discrepancy principle requires an estimate of the error level as 

well as the assumption that the noise is Gaussian.  While the 

error level can be estimated by the amount of energy removed 

with the principal components, the Gaussian assumption must 

be validated. 

 

STATISTICAL PROPERTIES OF TEM DATA 

 
In a Tikhonov-based inversion process, the choice of the 

tradeoff parameter in the objective function can be chosen 

through an estimate of the optimum data misfit (discrepancy 

principle).  If the noise comes from a Gaussian distribution, 

we may assume a #$ distribution after data normalisation, 

which leads to an optimum data misfit value (in a least squares 

sense) of the number of data.  However, after processing with 

principal component analysis, it is not immediately clear 

whether or not this relationship still holds.  After statistical 

denoising, it is intuitively clear that the noise level should be 

less--however the extent of the reduction and the changes in 

noise distribution must be quantified. 

 

 

 
Figure 2: Inversion with PCA. (top) Inversion of noisy 

data. (middle) Inversion of data processed with PCA. 

(bottom) Inversion of data processed with PCA and 

incorporating the rotation matrix into the inversion 

kernels. 
 

A common method of noise reduction in PCA is to truncate 

the reconstruction—that is use fewer principal components 

than are available, setting to zero the components 

corresponding to the smallest eigenvalues.  The number of 

zeroed components usually is computed by adding up the 

value of the small eigenvalues until the estimated noise 

threshold is reached.  For example, a 5% error level would 

lead to removing 5% of the sum of the eigenvalues.  If the 
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estimation is exactly correct and all the error comes from 

independent and identically distributed variables drawn from a 

Gaussian distribution, then the optimum data misfit would be 

zero.  Because the data errors do not always draw from a 

Gaussian distribution and because the process does not 

perfectly separate signals, an understanding of the statistical 

changes of the noise before and after PCA is required.   

 

Synthetic Test 

 
To understand the effects of PCA rotation on mixtures of 

distributions, we processed synthetic datasets containing both 

Gaussian mixtures and Gaussian/Poisson mixtures.  When a 

small number of variables drawn from Gaussians are added 

together, the aggregate distribution is a multivariate T-

distribution.  As the number of independent additive 

distributions increases, the T-distribution approaches a 

Gaussian, as described by the Central Limit Theorem. 

 

Figure 3 shows the aggregate distribution taken from four 

Gaussian distributions.  Figure 4 shows the resulting 

histogram after processing with PCA.  Figure 4(top) shows the 

histogram of the data reconstructed with the first principal 

component.  The mean of the recovered distribution is equal to 

the mean of the original distribution.  Subsequent principal 

components have zero mean (Figure 4(bottom)). 

 

 
Figure 3: Aggregate distribution of four Gaussian 

variables. 

 

 

 
Figure 4: (top) Histogram of reconstructed data with the 

first principal component only.  (bottom) Histogram of 

reconstructed data from the fifth principal component. 

 
By constructing QQ plots for the data before and after 

processing, we can see if the distribution shape has changed.  

If the QQ plot is linear, we may infer that the data still come 

from the same distribution type as before processing (e.g. 

Gaussian); however we may not assume the parameters (e.g. 

mean or variance) have not changed. 

 

Figure 5 shows the QQ plots calculated from the original and 

processed data.  Both for the data constructed from the first 

principal component as well as for the data constructed from 

PCs 5-25, the QQ plots indicate that the data come from the 

same distribution (in this case, a multivariate T).  The tails of 

the distributions however, indicate that the degrees of freedom 

have changed between the original and processed data. 

 

 

 
Figure 5: QQ plots between original data and (top) data 

reconstructed with the first principal component, (bottom) 

data constructed from PCs 5-25.  The blue line represents 

the QQ plot while the red line is a linear fit for visual 

reference. 
 

We performed the same test by adding random data sampled 

from a Poisson distribution (not shown) with the same results.  

Again, the distribution shape did not change except for the 

tails of the distribution. 

 

Field Example 
 

We compared the distributions of the noise in a field survey 

before and after processing in the same manner as the previous 

section.  These data were acquired as part of an unexploded 

ordnance survey from Kaho'olawe, Hawaii.  Figure 6 shows 

the histogram constructed from the first time-gate.  Unlike the 

synthetic examples, however, the histogram indicates the data 

come from a bimodal distribution. 

 

To investigate whether the statistical distribution of the noise 

has changed, we first inverted the raw data.  The residuals of 

this inversion were considered as the original or true noise.  

We then processed the data with PCA to obtain the PCA-

estimated noise.  By constructing QQ plots, we see that the 

distribution shape has remained largely unchanged by PCA 

(Figure 7).  The tails of the distribution have changed 

indicating a change in the degrees of freedom. 

 

The results of these tests show that the distribution of the data 

errors remains largely unchanged before and after processing.  

However, the data errors are not exactly represented by a 

Gaussian distribution, but rather a multivariate T-distribution 

with differing degrees of freedom.  If a relatively small 

number of principal components are removed, then any  



 

 

Figure 6: Bimodal distribution from a TEM

blue line indicates two multivariate T-d

the data. 
 

Figure 7: QQ plot between inversion re

residuals.  The blue line represents the Q

red line is a linear fit for visual reference.
 

methods used for selection of tradeoff param

or less valid than before processing.   

 

COMPRESSIVE INVERS
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TWWWWdJJJJr + �WWWWm

TWWWWm��mmmm
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but the rotation matrix, R, does not inc

rotation.  Thus the model perturbations are

principal component domain.  The number o

that must be calculated in the principal com
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Figure 8 shows a simple linear example 

compression.  By thresholding the prin

reconstruction at seven (Figure 9), only 

inversions were required to recover the mod

128 required with standard approaches.   
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