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INTRODUCTION 
 

In a seismic survey using a surface source, the seismic 

velocity of the surface layer is generally unknown, unless a 

separate uphole or refraction survey is employed.  This has 

implications in determining static time-shifts in the near-

surface caused by variations in topography and weathering.  

Variations in layer velocities can also have an effect on the 

statics solution.  Refraction travel-time data are routinely used 

for calculating the statics solution.  However, without the 

knowledge of the surficial velocity, errors in estimated time 

shifts can cause errors in the critical near-surface depth model. 

 

Often overlooked with refraction data is the amplitude of the 

refraction event.  As with reflection seismology, the amplitude 

of a seismic event may provide additional information critical 

to the characterisation of the sub-surface.  In the context of 

seismic refraction, the measured amplitude is proportional to 

the magnitude of the shot and the offset at which the refraction 

event is measured.  The constant of proportionality is called 

the head-wave coefficient.  This coefficient is a complex 

function of the elastic properties of the rock through which the 

critically refracted wave propagates (e.g. Červený and 

Ravindra, 1971).   

 

Although many authors have derived and published theoretical 

expressions for the head-wave coefficient, very few have 

attempted to derive quantitative geological information from 

measured refraction amplitudes.  In order to do this, the 

dominating amplitudes of the shot and offset terms must be 

separated from the head-wave coefficient term of interest.  

Palmer (2001a, 2001b) attempted to do this using a novel 

approach called the refraction convolution section (RCS).  

Meulenbroek (2010) presented an alternative technique in 

which a surface-consistent, non-linear least-squares inversion 

scheme in employed.  The formulation of this inverse problem 

has similarities to that of surface-consistent residual statics.   

 

This paper extends on Meulenbroek (2010), focussing more on 

the inversion methodology, namely the means of forcing the 

problem to a realistic solution as fast as, and with as little 

error, as possible.  

 

THE INVERSE PROBLEM 

 
With reference to Figure 1, Equation 1 shows the expression 

for the refraction amplitude originating from a source, S, with 

a magnitude, F(t), recorded by a geophone, G, which is at an 

offset, r from S. 

 

  (1) 

 

The distance the wave travels in the refractor, L, depends on 

the depth to the refractor, z, and the critical angle of refraction, 

iC. 

 
Figure 1: Ray-path diagram of critically refracted wave 

originating from the source, S, and recorded by a 

geophone, G, at an offset, r. 

 
Each individual refraction amplitude measurement originates 

from a unique combination of model parameters.  These 

model parameters are the shot term (F(t)), the receiver term 

(K)  and the offset term (denominator in Equation 1).  This can 

be expressed as a system of equations of the form: 

 

   (2) 

 

SUMMARY 
 

The amplitude of a seismic refraction event is determined 

by the properties of rocks through which the seismic 

waves travel, the amplitude of the shot and the offset at 

which the refraction is recorded.  A surface-consistent, 

non-linear inversion scheme, which uses the Levenberg-

Marquardt algorithm, has been developed which aims to 

extract near-surface rock properties from the measured 

refraction amplitudes.   

 

Perhaps the most important challenge to extracting a 

unique, geologically plausible solution is in determining 

initial values of control parameters which dictate how the 

solution is allowed to progress.  If these control 

parameters are not tailored specifically to the problem in 

question, convergence to a solution can be very slow and 

even fail to get off the ground in some cases. 

 

Comparison between results obtained using default 

control parameters, compared to those obtained using 

control parameters specifically tailored to the problem, 

shows a reduction in the error between the true 

observations and the model-generated observations, while 

retaining fidelity in the solution.  A reformulation of the 

problem significantly reduces the error but fidelity is 

apparently compromised.  Comments are made on how to 

achieve an optimal middle ground. 

 

Key words: Inversion, least-squares, seismic refraction, 

amplitude. 
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Here x is the N vector of model parameters; b is the M vector 

of observations and A is the MxN matrix relating each 

observation to the model parameters.  Because M>N, the 

system is overdetermined and can be solved using the least-

squares criterion.  However, because the observations are a 

non-linear combination of model parameters (Equation 1), the 

system is non-linear and cannot be solved using simple linear 

least-squares inversion techniques (such as those used for 

residual statics).  The nonlinear problem is given by: 

 

  (3) 

 

where e is the error term.  The algorithm used to solve this 

nonlinear problem is the Levenberg-Marquardt algorithm 

(Levenberg, 1944; Marquardt, 1963).  For this study, a widely 

used implementation of the algorithm, namely the PEST suite 

of programs (Doherty, 2004, 2010), is used.  In the following, 

the PEST terminology is broadly used, although the comments 

are applicable to non-linear inversion algorithms in general. 

 

Meulenbroek (2010) presented such an inversion for a 2D 

dynamite survey in the Bowen Basin.  The resulting model 

parameters were realistic and consistent with Palmer’s 

method. However when they were back-substituted, the error 

between the true observations and the model-generated 

observations was very high.  The objective function, ф, which 

is the sum of the squares of these residual errors, is an 

important indicator of the inversion performance.  The aim is 

to reduce ф as much as possible while still producing a 

realistic result.  Informed decisions about the inversion control 

parameters, as well as how the problem is formulated, can 

have a substantial effect on how well the problem is 

optimised, if at all. 

 

PRACTICAL CONSIDERATIONS 
 

Practical non-linear inversion algorithms include various 

control parameters which, when tuned correctly to the specific 

problem, can mean the difference between an effective and an 

ineffective inversion.  These important control parameters 

include initial value of the Marquardt-λ, and how much this 

parameter is allowed to change as optimisation progresses.  A 

high initial λ will take advantage of the properties of the 

steepest descent method while a low initial λ will take 

advantage of the properties of the Gauss-Newton method (e.g. 

Doherty, 2010). 

 

Regularisation, i.e. the application of a-priori information for 

the purposes of constraining the model parameters, is a key 

step in turning an ill-posed problem into a well-posed 

problem.  Regularisation in this particular problem takes the 

form of eliminating amplitudes which are either anomalously 

large at a given offset, or have been clipped at near offsets.  It 

is also possible to limit the upper and lower bounds of 

parameter values so that they are forced to remain within a 

realistic range.  It should be noted that because the problem is 

overdetermined, the solution will never be exact. 

 

Weighting the observations can also have a positive effect on 

the outcome of the inversion.  In the case of raw refraction 

amplitude observations, there can be up to 5 orders of 

magnitude difference between the amplitudes measured at the 

near-traces and those measured at far traces.  In this case, the 

quantity described by the larger numbers will dominate ф, 

thus inhibiting the optimisation process (Doherty, 2010).  

Applying weights to the data can overcome this problem by 

reducing the large residuals, hence making the other model 

parameters more visible to the calculation of ф. 

 

Instructions regarding when to cease optimisation are just as 

important as those regarding how to start optimisation.  If 

these control parameters are not chosen judiciously, 

optimisation may cease prematurely, producing a poorer result 

than could otherwise be achieved.  Conversely, if these are set 

too tight, optimisation may not cease at all.  These control 

parameters include the maximum number of iterations, the 

relative ф reduction and a lower ф threshold where the user 

can deem the optimisation to be complete. 

 

Instructing the problem as to how the model parameters are 

allowed to change over time is another critical control which 

can have a major effect on how quickly a problem can be 

optimised.  If the initial model-generated observations are 

vastly different to the true observations, a small limit on how 

much each parameter is allowed to change per iteration can 

severely restrict optimisation, making progress extremely 

slow.  Limiting how much ф is allowed to change per iteration 

can also have this effect. 

 

Each of these particular control parameters, and many others, 

must be specifically chosen to suit the model in question. 

 

Other Tools 

 

The use of truncated singular-value decomposition (TSVD) in 

the problem at the stage of calculating the parameter upgrade 

vector (Doherty, 2010: Equation 2.18) can help eliminate 

unwanted noise in the problem.  When inverted, this random 

noise is amplified and then dominates the solution, making it 

unstable.  If the matrix has any singular values of zero, the 

matrix is singular and cannot be inverted.  By eliminating the 

eigenvectors representing certain parameter combinations 

which cause this problem, identified by their small or zero 

singular values, the matrix to be inverted becomes less 

singular or non-singular.  The advantage of this is that the 

problem may be forced to a solution.  However, the 

disadvantage is that it can also eliminate fine detail in the 

solution.  If optimisation is terminated due to the matrix being 

singular, application of this may allow the optimisation to get 

off the ground. 

 

In PEST, Broyden’s Jacobian matrix update is also used as 

standard.  In short, this technique aims to reduce the 

computational expense of calculating the Jacobian matrix at 

each iteration.  The reader is referred to Broyden (1965) and 

Doherty (2010) for further information.   

 

REAL DATA EXAMPLE 
 

Figure 2 shows the result for the inverted shot, receiver and 

offset terms using a simple initial model and default control 

parameters generated by PEST (Meulenbroek, 2010).  The 

runtime for this solution was 5 hours.  In that time, there were 

2 iterations. The final ф was large (7.21x1021) with only 

minimal reduction on the second iteration. 

 

Despite the apparently high ф value, analysis of the 

constituent shot, receiver and offset domains did yield 

apparently meaningful information.  The relative amplitudes 

of the shots seen in Figure 2 were broadly consistent with the 

relative amplitudes seen on the raw shot records.  In the offset 

domain, the amplitudes exhibit a general inverse square 

relationship.  In the receiver domain, a smoothed version of 
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the inverted amplitudes were consistent, in a relative sense, 

with those obtained using the RCS method of Palmer (2001a, 

2001b).  Nevertheless the error indicator, ф was still 

unsettlingly high.   Tuning the control parameters specifically 

to the problem may help to reduce ф. 

 
Figure 2:  Amplitude due to shot, receiver and offset terms 

obtained from inversion of refraction amplitude data using 

default control parameters. 
 

Using the default control parameters, optimisation was 

terminated because ф was not being reduced at all.  The 

maximum relative parameter change was set to 3.0 which, 

considering the large observational range, is very restrictive to 

how the model parameters could move.  For each iteration, the 

parameters representing the near-offset amplitudes moved the 

most, which is to be expected because their final values differ 

the most from their initial values.  This suggests that the limit 

of how much each parameter can change per iteration should 

be much greater. 

 

As a comparison, the following control parameters were 

changed from default values to model specific values: 

• Maximum parameter value change limit changed 

from 3 to 30000, 

• TSVD activated, 

• Termination criteria tightened so relative changes in 

ф are very small and tested over a large range of λ,  
• λ adjustment parameter set to allow it to change as 

much as possible,  

• Relative ф reduction limit made very small (3x10-4) 

to allow more λ values to be tested per iteration.  

This reduces the number of required iterations.  

• Absolute/relative parameter increment for shot and 

offset terms increased to 1000 so they are able to 

move more freely, 

 

Figure 3 shows the resulting amplitudes for the shot, receiver 

and offset domains, separated by vertical lines.  This result 

took 8 hours to evaluate 8 iterations, in which time ф was 

reduced from 7.29x1021 to 5.48x1020.   

 

Comparison between the vertical scales of Figure 2 and Figure 

3 shows that there is a large difference between the constituent 

shot and offset amplitudes.  When the problem specific control 

parameters are used, the result is a lower ф.  Although ф is 

still very high, the fact that it is lower suggests that the result 

shown in Figure 3 is closer to the truth than the result shown 

in Figure 2.  The result in Figure 3 illustrates the relative 

amplitude of the receiver terms compared to the dominant shot 

and offset terms.  These terms in Figure 3 are very similar in 

character, to those in Figure 2, although the relative scaling of 

the shot, receiver and offset terms is very different. 

 
Figure 3:  Amplitude due to shot, receiver and offset terms 

obtained from inversion of refraction amplitude data using 

control parameters tailored specifically to the problem. 
 

Figure 4 shows a close-up of the receiver terms in Figure 3.  

Comparison with Figure 2 suggests that the general trend of 

the head-wave coefficient has been preserved.  However, the 

original inversion result appears to have a higher resolution, 

i.e. the fine detail appears to be better preserved than the result 

shown in Figure 4.  This may be attributed to the application 

of TSVD.  In this case, stability has been added, but at a slight 

cost of resolution.   

 
Figure 4:  Zoom in of receiver terms from Figure 3. 

 

Although ф has been reduced by 1 order of magnitude, it is 

still very high.  The reason for this is the very large range of 

observational amplitudes.  The problem is formulated such 

that large residuals dominate ф, hiding the rest from 

contributing to the solution (Doherty, 2011 pers. comm.).  

This can be overcome in several ways.  One way is to weight 

the data such that every observation contributes to the 

calculation of ф equally.  This can be done either by applying 

a weight to each observation which is the inverse of its value 

or to weight the data based on how many observations per 

offset there are.  Another solution entirely is to reformulate the 

problem by attempting to eliminate the large residuals prior to 

inversion. 

 

Eliminating Large Residuals 

 

If the observed refraction amplitudes are sorted based on their 

offsets and plotted, a clear relationship can be seen (Figure 5).  

As is stated above, the amplitudes measured at near offsets 

differ from those measured at far offsets by about 5 orders of 

magnitude.   
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Figure 5:  Measured refraction amplitude plotted against 

offset (m). 
 

To mitigate this sharp decrease in amplitude with offset, the 

mean amplitude at each offset is calculated and an inverse 

power law curve is fitted to these mean data points.  The data 

are then multiplied by the inverse of this curve to equalise the 

amplitudes.  The positive and negative offsets are treated 

separately.  These are subsequently input as the true 

observations. 

 

Based on the initial result shown in Figure 2, the initial model 

was chosen with all parameters set to 4.0.  The initial ф for 

this model is 2.96x107.  After 11 iterations, ф is reduced to 

2874.9.  Figure 6 shows the result.  The vertical lines separate 

the shot, receiver and offset domains.  

 

 
Figure 6:  Amplitude due to shot, receiver and offset terms 

obtained from inversion of refraction amplitude data after 

offset dependence has been removed prior to inversion. 
 

Note how the dominating offset effect seen in Figures 2 and 3 

has been all but eliminated.  There is only random residual 

noise in the offset domain.  Although ф has been reduced 

significantly, comparison between Figure 6 and Figures 2 and 

4 suggests that this has come at the expense of geological 

certainty in the receiver domain.  Because Meulenbroek 

(2010) showed that the receiver terms in Figure 2 are 

relatively consistent with the results obtained using Palmer’s 

method, the fact that the receiver terms in Figure 6 differ 

suggests that while targeting the offset terms to reduce the 

residual error, the shot and offset terms have also been 

affected.  Clearly a compromise must be reached whereby ф is 

reduced if possible, but with care taken to ensure the 

geological fidelity of the solution. 

 

 

 

CONCLUSIONS 
 

This study has examined non-linear inversion methodology 

aimed at extracting head-wave coefficients (and ultimately 

geological interpretation) from refraction amplitudes.  This 

demonstrates that it is important to consider the specific 

problem in question when designing an inverse problem.  

Setting the control parameters, which dictate how the problem 

is set up, how the optimisation is allowed to progress and how 

it is terminated, requires careful consideration if the inversion 

is to be both meaningful geologically and mathematically 

robust.   

 

Initial results demonstrate that the fit between the model-

generated observations and the true observations (as indicated 

by the objective function ф) can be improved if inversion 

control parameters are tailored specifically to the problem at 

hand.  However, it is unwise to rely on any single criterion to 

automatically judge the success, or otherwise, of the inversion.  

The geological fidelity of the derived solution must be 

carefully monitored.  Attempting to define a happy medium 

between mathematical optimisation and the geological reality 

is the subject of current research. 
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