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INTRODUCTION 
  

Recently, the magnetic gradient survey has been utilized in 

many practical cases such as detecting UXO (Sanchez, et al, 

2005) and archaeological application (von der Osten-

Woldenburg, et al, 2006). The magnetic gradient survey has 

better advantages rather than conventional total magnetic 

intensity (TMI) survey because it has better resolution of 

shallow targets (Schmidt and Clark, 2006). 

In order to interpret the magnetic gradient tensor data, I 

derive a closed-form solution that point out the source 

location from observation point. This method begins with the 

relationship between a magnetic dipole and the magnetic 

gradient tensor. This method has the same analogy of Rim and 

Li (2010) that dealt with gravity gradient tensor. And back to 

original, it is analogous to the methods developed by Morris et 

al (1995). In case of gravity gradient tensor, Pederson and 

Rasmussen (1990) derived several invariant relations between 

gravity gradient tensor, and Beike and Pedersen (2010) 

successively applied these invariants on interpretation of 

gravity gradient tensor. However their method required all 

components for calculating invariants because obtaining 

eigenvector included all components. In this work, I derive 

analytic relation between source and observing points using 

only three independent components rather than all. 

 

 

DERIVATION OF THE RELATION BETWEEN 

THE SOURCE LOCATION AND MAGNENT 

GRADIENT TENSOR  

 

The magnetic gradient tensor of a vertically magnetizated 

dipole is a tensor defined by the double gradient of a 

positioning vector as 
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where M is magnetic moment of dipole and z$  is unit vector 

for vertical direction. ( , , )p p p pr x y z=
ur

 and ( , , )q q q qr x y z=
ur

 

is the positioning vector of the observation point and source 

respectively (Blakely, 1996). The magnetic gradient tensor 

components are given in matrix form as 
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For simplicity, I defined the positioning vector from 

observation point to source location 

( , , ) ( , , )q p q p q px y z x x y y z z= = − − −r and its distance is 

2 2 2( ) ( ) ( )q p q p q pR x x y y z z= − + − + −
.
This tensor has 

five independent components as it is symmetric and traceless. 

The direction angles can be obtained through ratios of proper 

tensor components and additional parameter ε. ε can be 

derived from composition of tensor components as like 

Appendix A. 
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In equation (3),

 

xy
θ ,

yzθ , and 
xzθ are the angles from $x , $y , 

and z$  to the source, counter-clockwise on the x-y, y-z, and 

z-x plane respectively. The schematic relation between 

positioning vector and its direction angles are shown as Fig. 1. 

Using direction angles and one of magnetic gradient tensor 

component, the positioning vector can be derived as 

 

(cos cos ,cos sin ,sin sin )yz xy yz xy yz xyς θ θ θ θ θ θ= ±r r
    (4) 

SUMMARY 
 

In this paper, I propose the algorithm that the location of 

a magnetic dipole can be detected from the magnetic 

gradient tensor. I derive the location vector of a vertically 

magnetizated dipole from magnetic gradient tensor. 

Deficit of magnetic moment of magnetic dipole makes the 

induced location information incomplete. However if the 

observation of magnetic gradient tensor would be 

collected on one more points, the algorithm is able to 

point the location of magnetic dipole by clustering the 

solution of the proposed method. For example, I show 

that magnetic gradient tensor can be converted as the 

source location successively by picking common solution 

area in synthetic case of borehole observation. 

 

Key words: magnetic gradient tensor, magnetic dipole 



Interpretation of magnetic gradient tensor  eg: Rim, Park and Jung  

22
nd
 International Geophysical Conference and Exhibition, 26-29 February 2012 - Brisbane, Australia   2 

 

where
 

1/8
2

2

3 2

(2 3 ) 1
(3 )

(1 )
zz

M
B

ε

ε

 −
=  

+ 
r

 

( )
1/2

2 2 2cos cos sinxy yz xyς θ θ θ
−

= +
. 

 

However the positioning vector still has ambiguities because 

the magnetic moment is unknown. Therefore I propose 

automatic locating method with connecting magnetic gradient 

measurements.
 

 

LOCATING THE DIPOLE FROM MAGNETIC 

GRADINET TENSOR 
 

During recovering positioning vector, the magnetic moment 

has still unknown. Therefore the exact location cannot be 

derived because of insufficient information of magnetic 

moment. In order to obtain the location of magnetic dipole, I 

proposed the method to find a vertically magnetized dipole 

without magnetic moment information.  

 

1. set up a certain size window in given observation points 
 

( , , )p p px y z  and tolerance T that the solution could be accepted 

within. And then searching points ( , , )k k kx y z  are also settled 

down by discretising the interested area. 

 

2. calculate positioning vectors without magnetic moment 

information at given observation points in the selected 

window, 
(cos cos , cos sin , sin sin )

yz xy yz xy yz xy
ς θ θ θ θ θ θ∝r  

where 

( )
1/2
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3. obtain directional cosine 
1 2 3( , , )c c c

 at given observation 

points using direction angles. 

( )1 2 3
( , , ) cos cos ,sin cos ,sin sin

xy yz xy yz xy yz
c c c ς θ θ θ θ θ θ=

 
 

4. if it is satisfied with equation (5) at every observation points 

( , , )p p px y z
 within the selected window, the point 

( , , )k k kx y z  

could be a true source location. 

( ) ( )
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      (5) 

where 1 2 3( , , ) ( , , )p k p k p ka a a x x y y z z= − − −
. 

 

5. repeat the procedure from 1 to 4 until the moving window 

covers all observation points.  

 

The equation (5) comes from the condition that the line with 

directional cosine 
1 2 3( , , )c c c

 and through the observation 

point ( , , )p p px y z
 should be passed through within the sphere 

with center 
( , , )k k kx y z  and radius τ. If the solutions would be 

fallen within the clustered area, the area can be picked the true 

point source location.  

 

SYNTHETIC CASE 
 

I simulated magnetic gradient measurement of a vertically 

magnetizated dipole in borehole as shown Fig. 2. In case using 

magnetic gradient components
xzB ,

yzB , and 
zzB , the 

proposed method can converse solution in the vicinity of real 

source area.  

  
Figure 1. Schematic relation between r , θ  and ϕ . r  

is the positioning vector between observation point 

( , , )
p p p

P x y z  and location of magnetic dipole ( , , )
q q q

Q x y z . 

xyθ  is the  angle between x axis and projected 

positioning vector on x y−  plane and 
yz

θ
 

is the angle 

between y  axis and projected positioning vector on 

y z−  plane. 
xyϕ  and 

yzϕ  are the projection angles of 

positioning vector on the x y−  plane and y z−  

plane, respectively. 

 
 

 

Figure. 2. Locating a magnetic dipole using magnetic 

gradient tensor. (a) In upper panel, the red circle and blue 

triangle represented the location of dipole source and 

observation borehole, respectively. (b) In main panel, the 

algorithm proposed in the text showed the perfect match 

between the solutions (blue dots) and real magnetic dipole 

location (red solid circle) even though the magnetic tensor 

had a white noise. The blue arrows which were calculated 

by directional cosines on the observation borehole pointed 

the location of magnetic dipole. (c) In right panel, 
xzB ,

yz
B  

and 
zzB  are shown as three independent components

 
of 

magnetic gradient in case calculated on the borehole 

observation points. Each component has 5% Gaussian 

noise. 
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CONCLUSIONS 
 

The location of magnetic dipole was derived from magnetic 

gradient tensor. However it is impossible to induce the exact 

location vector of magnetic dipole completely because the 

magnetic moment of dipole is unknown. In order to point the 

location of magnetic dipole without magnetic moment I 

proposed the algorithm to cluster the solution area from one 

more observation points of magnetic gradient tensor. In 

synthetic case of borehole measurements, the proposed 

method successively pointed the location from magnetic 

gradient tensor. So far, the algorithm is applied on synthetic 

case, it could be extended to real data if the distance between 

observation and source is far enough to approximate a single 

dipole source. 

 

 

APPENDIX A 
 

Derivation of ε 

Firstly, new variable zΩ is defined by ratio of magnetic 

gradient tensor components as 
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zΩ can be rewritten by replacing magnetic gradient tensor 

components as  
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The equation (A-2) can be solved as 
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One of solution in equation (A-3) can be selected by condition 

that ε should be positive real.
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