“Unsmooth” 1D inversion of frequency domain marine controlled source EM data

Neil Godber
Vale/University of Queensland
Brisbane, Australia
njgodber@gmail.com

Peter Fullagar
Fullagar Geophysics Pty Ltd
Brisbane, Australia
fullagargeophysics@yahoo.com

SUMMARY

The goal of geophysical inversion of electromagnetic (EM) data is to recover a model of the geoelectrical properties of the sub-surface. The standard practice for 1D inversion of marine controlled source EM (CSEM) data is to generate smooth conductivity models using least squares (L_2-norm) methods. However, sedimentary geology is stratified and piece-wise continuous. As such, smooth resistivity models cannot represent this character. In response to this inconsistency, a means was sought to generate more geologically plausible, piece-wise continuous models.

The common approach in the literature when generating piece-wise continuous inversion models is to regularize L_2-norm methods in such a manner as to induce blocky behaviour. Although effective, these techniques are self-conflicting; forcing non-smooth behaviour from an implicitly smooth algorithm. In contrast, L_1-norm inversion inherently produces piece-wise continuous models. To investigate the possible utility of this approach, a L_1-norm inversion algorithm has been developed and tested on synthetic and real datasets. The L_1-norm results were compared with those generated using an industry standard L_2-norm algorithm.

The synthetic inversions focused on previously published examples. The real data inversions focused on electric and magnetic field measurements recorded over the main reservoir sand of the Pluto gas field in block WA-350-P, North West Shelf, WA.

The L_1-norm inversions recovered, to within the resolution limits of the CSEM method, the depth, thickness and resistivity of the synthetic geological models and the Pluto-1 resistivity well log, whilst fitting the input data to within noise. When compared against the L_2-norm profiles, the L_1-norm inversion more closely represented the stratified character of the sedimentary sequence. It was therefore concluded that L_1-norm inversion is an attractive alternative to smooth L_2-norm methods when blocky inversion models are desired.

Keywords: CSEM, inversion, L_1, L_2

INTRODUCTION

The controlled source EM (CSEM) method has gained traction within the petroleum industry over the last eleven years for its capability to detect resistive anomalies which may be associated with hydrocarbons. A key component of the interpretation of CSEM data is its inversion into a geoelectrical model of the subsurface. Although higher dimensional methods are now common, 1D inversion remains relevant due to its algorithmic simplicity and computational efficiency. Much of the CSEM literature has focused on the generation of smooth resistivity models using least squares (L_2-norm) methods, e.g Constable et al. (2008), Key(2009), Key and Lockwood (2010). However, sedimentary geology is stratified and its resistivity is piece-wise continuous. If the goal of the inversion is to generate geologically representative profiles, smooth resistivity models are not be desirable. A common approach is to regularize L_2-norm methods in such a manner as to induce blocky behaviour. Although effective, these techniques are self-conflicting: demanding non-smooth behaviour from an implicitly smooth algorithm. In contrast linear programming (L_1-norm) inversion inherently produces piece-wise continuous models. However, with the exception of Christensen and Dodds (2007), little has been published regarding L_1-norm inversion in CSEM. Therefore to investigate the possible utility of this approach, a L_1-norm inversion algorithm has been developed. This algorithm has been tested on synthetic and real CSEM datasets and the results compared with the smooth inverted models produced by an industry standard L_2-norm algorithm.

METHOD

Overview

In order to examine the capability and limitations of L_1-norm methods, two studies were performed. For the synthetic study, L_1 and L_2-norm inversions were run on two synthetic datasets using the same starting model and a target misfit of 1%. For the real data study, L_1 and L_2-norm inversions were run using similar starting models and a target misfit of 5%. For the synthetic study the inverted models were evaluated against the known geoelectrical profile. For the real data study the inverted models were assessed against the resistivity logs from a well through the main Pluto reservoir.

The L_1-norm inversions were performed using $VPcem1D$ (Fullagar Geophysics Pty Ltd), a 1D forward modelling and inversion program developed for purpose. The L_1-norm inversions were performed using $Occam1DCSEM$ (Key 2009). Both programs make use of the isotropic conductivity point dipole frequency domain full tensor E and B field formulation of Key (2009). $VPcem1D$ utilises a minimum L_1-norm inversion scheme formulated below (Fullagar & Oldenburg, 1984). Variations of this scheme have previously been applied in Fullagar Geophysics Pty Ltd 1D TEM inversion program AMITY. For details of the $Occam1DCSEM$ L_1-norm inversion algorithm the reader is referred to Constable et al. (1987).

Inversion Methodology

The inversion module solves the inverse problem in the conventional manner by iteratively adjusting a layered starting model. Corrections ($\Delta\sigma$) to the layer conductivities (σ) are computed in order to reduce the misfit between the calculated...
model response and the N data. The program utilizes a linear
programming routine to solve
\[
\begin{align*}
\delta e_N & = \frac{1}{2} \mathbf{J}_{NK} \mathbf{J}_{NK}^T \{ \delta e_N \} - \frac{1}{2} \mathbf{J}_{NK} \mathbf{J}_{NK}^T \{ e_N \} = \{ \mathbf{J}_{NK} \}^T \{ \delta e_N \}
\end{align*}
\]
(1)
where \(\delta e_N \) is a vector containing the N observations, \(e_N \) a vector containing the N calculated data, \(\mathbf{J}_{NK} \) a Jacobian which relates the change for the \(k \) th conductivity in model space to the \(n \) th datum in data space, \(\mathbf{J}_{NK}^T \) a order N identity matrix, \(\{ \delta e_N \} \) a vector containing the conductivity corrections and \(\{ e_N \} \) is a vector of data misfits. The fit of measured to calculated data is gauged using an L1-norm, i.e.
\[
\sum_{n=1}^{N} | \{ e_n \} - \{ \tilde{e}_n \} | \leq 1
\]
(2)
If the data errors are realisation of independent Gaussian random variables with zero mean and standard deviations \(\{ \sigma_n \} \), the expected value of Equation 2 is unity. The explicit inclusion of misfits allows for the imposition of the L1-norm condition on the solution and ensures that the problem is under-determined. Equation 1 is solved for the unknown conductivity corrections and misfits. Inversion proceeds iteratively, and the algorithm tries to reduce the L1-norm to some fraction (usually half) of its current value. For each iteration the optimal solution was defined as the one that minimises,
\[
\Psi = \sum_{k=1}^{K} | \{ \delta e_k \} |
\]
(3)
The inversion continues until Equation 2 is less than or equal to unity or stalling has occurred. Derivatives for the inversion are computed via a two point centred difference approximation, i.e.
\[
\frac{\partial f(\{ e_k \})}{\partial e_k} \approx \frac{f(\{ e_k + \Delta e_k \}) - f(\{ e_k - \Delta e_k \})}{2 \Delta e_k}
\]
(4)
where \(\Delta e \) is a small perturbation of the model parameter \(e \).

Geological Models
Two geological models, previously examined by Key(2009) and others, were used for the synthetic study (Figure 1). The first, a canonical 1D reservoir model, consisted of a 100m thick, 100 \(\Omega \)m resistive reservoir at 1 km depth below the sea floor. The second, a multiple reservoir model, consisted of the same reservoir with the addition of a 25 m thick, 5 \(\Omega \)m gas hydrate on the ocean floor and a 50 m thick, 10 \(\Omega \)m secondary reservoir at 500 m depth below ocean bottom. For both models the host is 1 \(\Omega \)m saline water saturated sediment beneath a 0.3 \(\Omega \)m, 1 km thick ocean column. An infinite basement extends below a depth of 3 km from the sea floor, its resistivity 1 \(\Omega \)m for the first model and 10 \(\Omega \)m for the second model.

Synthetic Data
After Key (2009), synthetic data were generated for a single receiver positioned on the sea floor. The data, normalised to the transmitter-moment, were generated at 50m stations for the fundamental (0.1 Hz) harmonic of a y-directed horizontal electric point dipole (HED) with a 100% duty cycle square wave source current ‘flow’ at 25m above the sea floor. The transmitter was towed away from the receiver over each of the geological models. For perfect in-line geometry and isotropic 1D conductivities, a y-directed HED excites in-line and vertical E-field and cross-line B-field components. Gaussian distributed random noise was generated with an amplitude of 1% of the signal. Independent realizations of the noise were added to the real and imaginary components subject to a minimum noise floor of \(10^{-18} \) for the normalised magnetic and \(10^{-18} \) for the normalised electric field data. Although near offset in-line data are well above this noise floor, the 1% error represents fluctuations due to imprecision in the source-receiver geometry as a result of navigational error. Data was observed to have dropped below the noise floor (i.e. S/N approached 0) at offsets greater than 7 km in-line and were therefore eliminated.

![Figure 1. The (a) canonical and (b) multiple 1D reservoir models used for the synthetic inversion study. Modified from Key (2009).](image-url)
transmitter moment and correction for rotation of the receivers from in-line geometry during deployment (Wicklund, 2007). A relative error of 5% was assigned to the data subject to a minimum absolute noise floor of $10^{-16} \text{ T} \cdot \text{A}^{-1} \cdot \text{m}^{-1}$ for the normalised magnetic and $10^{-20} \text{ V} \cdot \text{A}^{-1} \cdot \text{m}^{-2}$ for the normalised electric field data. A polynomial fit of the data was performed along profiles. Points that showed large deviations from the trend were assigned standard deviations such that the error bars encompassed the trend line. Data from locations with an in-line offset less than 1.5 km were removed as they contained little information at reservoir depths and suffered from increased navigation error (Lockwood, 2010 pers. comm.). The electric field data was smoothly varying with in-line offset (i.e. exhibited good S/N) out to 8km at 0.24 Hz and 6 km at 0.4 Hz. The magnetic field data was smoothly varying with in-line offsets out to 5km for both frequencies. Large errors, in excess of the noise floor, were assigned to the magnetic field data with greater than 5 km in-line offsets to ensure they had minimal influence on the inversion result. This was done because VPcsem1D did not allow for differing numbers of data between components. Data from stations with in-line offsets greater than 8km were eliminated.

Starting Models
For the synthetic inversion study the VPcsem1D starting model consisted of forty 1.2m layers, ranging from 1 to 4 km depth below sea level, with logarithmically increasing thicknesses ranging from 25 to 240m. The thickness of the layers at the depths of the target reservoirs were altered so that layer boundaries precisely matched those of the true model. Although an optimal case, the inversion algorithm was found to robustly recover the depth, resistivity and thickness of the reservoir without this modification (Godber, 2010). The VPcsem1D starting model for the Pluto inversion consisted of fifty 0.5 m layers between 870 and 6000 m with thicknesses increasing logarithmically from 40 to 220m. Three constant thickness layers at the base of the water column were allowed to vary. The remainder were fixed at 0.22 Ωm. For the synthetic study, the Occam1DCSEM starting model consisted of seventy five 1.2m layers ranging from 1 to 4.5 km depth below sea level with logarithmically increasing thickness layers. This was chosen for consistency with Key (2009). The Occam1DCSEM starting model for the Pluto inversion consisted of one hundred and eight, 0.5 m layers ranging from 870 to 8000 m depth below sea with a constant thickness of 72m. This was chosen for consistency with Key and Lockwood (2010).

RESULTS

Synthetic study: Canonical reservoir inversion
The results of the canonical reservoir synthetic data inversion are presented in Figure 2 and Figure 3. The VPcsem1D inversion converged from an initial L_2-norm misfit of 32 to an acceptable misfit of 0.8 in 17 iterations. The Occam1DCSEM inversion converged from an initial L_2-norm misfit of 25 to 1 in 27 iterations.

![Figure 2. Synthetic study inverted model for 0.1 Hz canonical reservoir data with 1% Gaussian noise.](image)

Both inversions fit the data to within 1% and recovered the approximate depth and resistivity of the target reservoir. The thickness of the target reservoir was closely approximated by the VPcsem1D inversion whilst the Occam1DCSEM suggested a thicker, broadly varying reservoir. Key (2009) found that the inclusion of a second frequency markedly improved the Occam1DCSEM thickness estimate. This was not observed to occur with VPcsem1D (Godber, 2010). The L_1-norm exhibited the piece-wise continuous character of the true profile whilst the smoothly varying L_2-norm did not.

![Figure 3. Observed and final VPcsem1D inversion model response for canonical reservoir synthetic inversion study. (a) B_x; (b) E_z; (c) E_y. (d) Normalized residuals. Error bars indicate attached standard deviation](image)

Synthetic study: Multiple reservoir inversion
The results of the multiple reservoir synthetic data inversion are presented in Figure 4 and Figure 5. The VPcsem1D inversion converged monotonically from an initial L_2-norm misfit of 53 to an acceptable misfit of 0.8 in 21 iterations. The Occam1DCSEM inversion converged from an initial L_2-norm misfit of 28 to 1 in 27 iterations. Both inversions fit the data to within 1% and effectively recovered the depth and resistivity of the main reservoir and gas hydrate. Interestingly, both also underestimated the thin reservoirs resistivity and depth whilst overestimating its thickness. This result suggested that there may be insufficient resolution in the dataset. Occam1DCSEM more closely recovered the basement resistivity than VPcsem1D. Notably, VPcsem1D introduced a spurious resistive anomaly between the thin and main reservoir.
As was observed in the canonical inversion, the L_1-norm inverted model exhibited the piece-wise continuous character of the true profile whilst the smoothly varying L_2-norm did not. This behaviour was not observed in any other results and was not a consistent feature of the approach (Godber, 2010).

CONCLUSIONS

A minimum L_1-norm 1D CSEM inversion algorithm has been developed and implemented in the program VPcsemID. When applied to synthetic and real marine CSEM data sets the algorithm recovered the depth, resistivity and thickness of resistive targets and fitted the data to within noise. When compared against smooth L_2-norm inverted profiles, the L_1-norm models exhibited the sharp contrasts in resistivity which typically occurs across reservoir boundaries and between some of the other sedimentary formations. It was therefore concluded that L_1-norm inversion is an attractive alternative to smooth L_2-norm methods when blocky (“unsmooth”) inversion models are desired.

ACKNOWLEDGMENTS

The work described here was performed as part of an honours project at the University of Queensland. We would like to thank Mr Andrew Lockwood and Dr Kerry Key for their input and Dr Steve Hearn for his support.

REFERENCES

Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers: Geophysics, 74, 9-20.

Key, K., and A. Lockwood, 2010, Determining the orientations of marine CSEM receivers using orthogonal procrustes rotation analysis: Geophysics, 75, 63-70.